1,993 research outputs found

    An Open Visualization Framework for Metamodel-Based Modeling Languages

    Get PDF
    AbstractIn the paper, we propose an automated, SVG-based visualization framework for modeling languages defined by metamodeling techniques. Our framework combines XML standards with existing graph transformation and graph drawing technologies in order to provide an open, tool-independent architecture

    Generating collaborative systems for digital libraries: A model-driven approach

    Get PDF
    This is an open access article shared under a Creative Commons Attribution 3.0 Licence (http://creativecommons.org/licenses/by/3.0/). Copyright @ 2010 The Authors.The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework

    P ORTOLAN: a Model-Driven Cartography Framework

    Get PDF
    Processing large amounts of data to extract useful information is an essential task within companies. To help in this task, visualization techniques have been commonly used due to their capacity to present data in synthesized views, easier to understand and manage. However, achieving the right visualization display for a data set is a complex cartography process that involves several transformation steps to adapt the (domain) data to the (visualization) data format expected by visualization tools. To maximize the benefits of visualization we propose Portolan, a generic model-driven cartography framework that facilitates the discovery of the data to visualize, the specification of view definitions for that data and the transformations to bridge the gap with the visualization tools. Our approach has been implemented on top of the Eclipse EMF modeling framework and validated on three different use cases

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements

    Category Theory and Model-Driven Engineering: From Formal Semantics to Design Patterns and Beyond

    Full text link
    There is a hidden intrigue in the title. CT is one of the most abstract mathematical disciplines, sometimes nicknamed "abstract nonsense". MDE is a recent trend in software development, industrially supported by standards, tools, and the status of a new "silver bullet". Surprisingly, categorical patterns turn out to be directly applicable to mathematical modeling of structures appearing in everyday MDE practice. Model merging, transformation, synchronization, and other important model management scenarios can be seen as executions of categorical specifications. Moreover, the paper aims to elucidate a claim that relationships between CT and MDE are more complex and richer than is normally assumed for "applied mathematics". CT provides a toolbox of design patterns and structural principles of real practical value for MDE. We will present examples of how an elementary categorical arrangement of a model management scenario reveals deficiencies in the architecture of modern tools automating the scenario.Comment: In Proceedings ACCAT 2012, arXiv:1208.430

    Introducing Simulation and Model Animation in the MDE Topcased Toolkit

    Get PDF
    International audienceThe Topcased project aims at developing a modular and generic CASE environment for model driven development of safety critical systems. Model validation is a key feature in this project and model simulation is a major way for validation. The purpose of this paper is to present the current Topcased process for building model simulators and animators. After introducing the functional requirements for model simulation and animation, it is explained how simulation is currently being integrated in the Topcased environment, presenting the main components of a simulator: a model animator, a scenario builder and a simulation engine. The approach is illustrated by the presentation of the first simulation experiment conducted in the project: the UML 2 StateMachines case study

    A Design Pattern for Executable DSML

    Get PDF
    Model executability is now a key concern in model-driven engineering, mainly to support early validation and verification (V&V). Some approaches have allowed to weave executability into metamodels, defining executable domain-specific modeling languages (DSML). Then, model validation may be achieved by direct interpretation of the conforming models. Other approaches address model executability by model compilation, allowing to reuse the virtual machines or V&V tools existing in the target domain. Nevertheless, systematic methods are not available to help the language designer in the definition of such an execution semantics and related support tools. For instance, simulators are mostly hand-crafted in a tool specific manner for each DSML. In this paper, we propose to reify the elements commonly used to support execution in a DSML. We infer a design pattern (called Executable DSML pattern) providing a general reusable solution for the expression of the executability concerns in DSML. It favors flexibility and improves reusability in the definition of semantics-based tools for DSML. We illustrate how this pattern can be applied to V&V and models at runtime, and give insights on the development of generic and generative tools for model animators

    Modeling and visualization of trace data

    Get PDF
    ASML Lithography machines trace data are vital inputs for configuration and calibration of machine components. To visualize these trace data, ASML engineers regularly utilize Gantt chart based visualization tools. Different components of lithography machines use different data formats to log their behavior. Accordingly different departments in ASML are using different trace data visualization tools. Developing and maintaining multiple visualizer tools is costly, time consuming and reduces interoperability. This report describes a project conducted to achieve a generic and an extensible Gantt visualization tool. The tool is developed using Model Driven Engineering (MDE) methodology. To capture generic trace data attributes, Gantt figure elements and the mapping between the two languages, Gantt data, Gantt figure and Gantt mapping language are defined. Furthermore, transformation modules that transform data from one format to another are specified. The extensibility of the Gantt visualization tool is verified by porting the tool in to two different domains. The effort required to port the tool to a new domain was found to be very minimal (12 man-hours). This is a considerable gain compared to an average of four to six months that would take if the tool was developed from scratch
    • 

    corecore