5,262 research outputs found

    Wavelet entropy as a measure of ventricular beat suppression from the electrocardiogram in atrial fibrillation

    Get PDF
    A novel method of quantifying the effectiveness of the suppression of ventricular activity from electrocardiograms (ECGs) in atrial fibrillation is proposed. The temporal distribution of the energy of wavelet coefficients is quantified by wavelet entropy at each ventricular beat. More effective ventricular activity suppression yields increased entropies at scales dominated by the ventricular and atrial components of the ECG. Two studies are undertaken to demonstrate the efficacy of the method: first, using synthesised ECGs with controlled levels of residual ventricular activity, and second, using patient recordings with ventricular activity suppressed by an average beat template subtraction algorithm. In both cases wavelet entropy is shown to be a good measure of the effectiveness of ventricular beat suppression

    An Analysis of Resting-State Functional Transcranial Doppler Recordings from Middle Cerebral Arteries

    Get PDF
    Functional transcrannial Doppler (fTCD) is used for monitoring the hemodynamics characteristics of major cerebral arteries. Its resting-state characteristics are known only when considering the maximal velocity corresponding to the highest Doppler shift (so called the envelope signals). Significantly more information about the resting-state fTCD can be gained when considering the raw cerebral blood flow velocity (CBFV) recordings. In this paper, we considered simultaneously acquired envelope and raw CBFV signals. Specifically, we collected bilateral CBFV recordings from left and right middle cerebral arteries using 20 healthy subjects (10 females). The data collection lasted for 15 minutes. The subjects were asked to remain awake, stay silent, and try to remain thought-free during the data collection. Time, frequency and time-frequency features were extracted from both the raw and the envelope CBFV signals. The effects of age, sex and body-mass index were examined on the extracted features. The results showed that the raw CBFV signals had a higher frequency content, and its temporal structures were almost uncorrelated. The information-theoretic features showed that the raw recordings from left and right middle cerebral arteries had higher content of mutual information than the envelope signals. Age and body-mass index did not have statistically significant effects on the extracted features. Sex-based differences were observed in all three domains and for both, the envelope signals and the raw CBFV signals. These findings indicate that the raw CBFV signals provide valuable information about the cerebral blood flow which can be utilized in further validation of fTCD as a clinical tool. © 2013 Sejdić et al

    Design, Evaluation, and Application of Heart Rate Variability Analysis Software (HRVAS)

    Get PDF
    The analysis of heart rate variability (HRV) has become an increasingly popular and important tool for studying many disease pathologies in the past twenty years. HRV analyses are methods used to non-invasively quantify variability within heart rate. Purposes of this study were to design, evaluate, and apply an easy to use and open-source HRV analysis software package (HRVAS). HRVAS implements four major categories of HRV techniques: statistical and time-domain analysis, frequency-domain analysis, nonlinear analysis, and time-frequency analysis. Software evaluations were accomplished by performing HRV analysis on simulated and public congestive heart failure (CHF) data. Application of HRVAS included studying the effects of hyperaldosteronism on HRV in rats. Simulation and CHF results demonstrated that HRVAS was a dependable HRV analysis tool. Results from the rat hyperaldosteronism model showed that 5 of 26 HRV measures were statistically significant (p\u3c0.05). HRVAS provides a useful tool for HRV analysis to researchers

    Open-source software for generating electrocardiogram signals

    Full text link
    ECGSYN, a dynamical model that faithfully reproduces the main features of the human electrocardiogram (ECG), including heart rate variability, RR intervals and QT intervals is presented. Details of the underlying algorithm and an open-source software implementation in Matlab, C and Java are described. An example of how this model will facilitate comparisons of signal processing techniques is provided.Comment: 10 pages, 5 figure

    A Review of Atrial Fibrillation Detection Methods as a Service

    Get PDF
    Atrial Fibrillation (AF) is a common heart arrhythmia that often goes undetected, and even if it is detected, managing the condition may be challenging. In this paper, we review how the RR interval and Electrocardiogram (ECG) signals, incorporated into a monitoring system, can be useful to track AF events. Were such an automated system to be implemented, it could be used to help manage AF and thereby reduce patient morbidity and mortality. The main impetus behind the idea of developing a service is that a greater data volume analyzed can lead to better patient outcomes. Based on the literature review, which we present herein, we introduce the methods that can be used to detect AF efficiently and automatically via the RR interval and ECG signals. A cardiovascular disease monitoring service that incorporates one or multiple of these detection methods could extend event observation to all times, and could therefore become useful to establish any AF occurrence. The development of an automated and efficient method that monitors AF in real time would likely become a key component for meeting public health goals regarding the reduction of fatalities caused by the disease. Yet, at present, significant technological and regulatory obstacles remain, which prevent the development of any proposed system. Establishment of the scientific foundation for monitoring is important to provide effective service to patients and healthcare professionals

    Extracting fetal heart beats from maternal abdominal recordings: Selection of the optimal principal components

    Get PDF
    This study presents a systematic comparison of different approaches to the automated selection of the principal components (PC) which optimise the detection of maternal and fetal heart beats from non-invasive maternal abdominal recordings. A public database of 75 4-channel non-invasive maternal abdominal recordings was used for training the algorithm. Four methods were developed and assessed to determine the optimal PC: (1) power spectral distribution, (2) root mean square, (3) sample entropy, and (4) QRS template. The sensitivity of the performance of the algorithm to large-amplitude noise removal (by wavelet de-noising) and maternal beat cancellation methods were also assessed. The accuracy of maternal and fetal beat detection was assessed against reference annotations and quantified using the detection accuracy score F1 [2*PPV*Se / (PPV + Se)], sensitivity (Se), and positive predictive value (PPV). The best performing implementation was assessed on a test dataset of 100 recordings and the agreement between the computed and the reference fetal heart rate (fHR) and fetal RR (fRR) time series quantified. The best performance for detecting maternal beats (F1 99.3%, Se 99.0%, PPV 99.7%) was obtained when using the QRS template method to select the optimal maternal PC and applying wavelet de-noising. The best performance for detecting fetal beats (F1 89.8%, Se 89.3%, PPV 90.5%) was obtained when the optimal fetal PC was selected using the sample entropy method and utilising a fixed-length time window for the cancellation of the maternal beats. The performance on the test dataset was 142.7 beats2/min2 for fHR and 19.9 ms for fRR, ranking respectively 14 and 17 (out of 29) when compared to the other algorithms presented at the Physionet Challenge 2013

    Central and peripheral autonomic influences : analysis of cardio-pulmonary dynamics using novel wavelet statistical methods

    Get PDF
    The development and implementation of novel signal processing techniques, particularly with regard to applications in the clinical environment, is critical to bringing computer-aided diagnoses of disease to reality. One of the most confounding factors in the field of cardiac autonomic response (CAR) research is the influence of the coupling of respiratory oscillations with cardiac oscillations. This research had three objectives. The first was the assessment of central autonomic influence over heart rate oscillations when the pulmonary system is damaged. The second was to assess the link between peripheral and central autonomic control schema by evaluating the heart rate variability (HRV) of people who were able or unable to adapt to the use of integrated lenses for vision, specifically acconrrmodation, correction (adaptive and non-adaptive presbyopes). The third objective was the development of a wavelet-based toolset by which the first two objectives could be achieved. The first tool is a wavelet based entropy measure that quantifies the level of information by assessing not only the entropy levels, but also the distribution of the entropy across frequency bands. The second tool is a wavelet source separation (WayS) method used to separate the respiratory component from the cardiac component, thereby allowing for analysis of the dynamics of the cardiac signal without the confounding influence of the respiratory signal that occurs when the body is perturbed. With regard to hypothesis one, the entropy method was used to separate the COPD study populations with 93% classification accuracy at rest, and with 100% accuracy during exercise. Changes in COPD and control autonomic markers were evident after respiration is removed. Specifically, the LF/HF ratio slightly decreased on average from pre to post reconstruction for controls, increased on average for COPD. In healthy controls, respiration frequency is distributed across multiple bandwidths, causing large decreases in both LF and HF when removed. With respiration effect removed from COPD population, LE dominates autonomic response, indicating that the frequency is concentrated in the HF autonomic region. Decrease in variance of data set increases probability tat smaller changes can be detected in values. The theory set forth in hypothesis two was validated by the quantification of a correlation between peripheral and central autonomic influences, as evidenced by differences in oculomotor adaptability correlating with differences in HRV. Standard Deviation varies with grouping, not with age. Increasing controlled respiration frequencies resulted in adaptive presbyopes and controls displaying similar sympathetic responses, diverging from non-adaptive group. WayS reduced frequency content in ranges concurrent with breathing rate, indicating a robust analysis. The outcome of hypothesis three was the confirmation that wavelet statistical methods possess significant potential for applications in HRV. Entropy can be used in conjunction with cluster analysis to classify patient populations with high accuracy. Using the WayS analysis, the respiration effect can be removed from HRV data sets, providing new insights into autonomic alterations, both central and peripheral, in disease

    HRV ANALYSIS USING ECG AS DATA SOURCE

    Get PDF
    Heart Rate Variability (HRV) is a physical phenomenon where the time interval between heart beats varies. It is measured by the variation in the beat to beat interval. Abnormalities present in the time interval between R wave peaks in the Electro-cardiogram (ECG) indicate cardiac dysfunction. Autonomic Nervous System controls the cardiac activity of the body and provides the beat to beat regulation of the cardiovascular system. Thus Heart Rate Variability is an important tool to access autonomic function also. The source for HRV is a continuous beat to beat measurement of interbeat intervals. An ECG signal can be used as the data source for HRV analysis. In this study the HRV data is obtained from ECG signal and is processed to calculate spectral HRV index, LF/HF ratio
    • …
    corecore