11,470 research outputs found

    Parameterization and geometric optimization of balloon launched sensorcraft for atmospheric research missions

    No full text
    We present a method for the payload centric automated design and manufacturing of balloon launched, high altitude gliders. The purpose of these gliders is to conduct directed measurements of atmospheric phenomena with a variety of payloads. A bespoke airframe design is generated that can protect the payload, ensure recoverability and extend sampling times. A manufacturing technique, that relies heavily on rapid prototyping, allows for rapid realization of the aircraft design. This allows atmospheric scientists and researchers unprecedented access to a broad range of altitudes

    Inkjet Printing of Functional Electronic Memory Cells: A Step Forward to Green Electronics

    Get PDF
    open access journalNowadays, the environmental issues surrounding the production of electronics, from the perspectives of both the materials used and the manufacturing process, are of major concern. The usage, storage, disposal protocol and volume of waste material continue to increase the environmental footprint of our increasingly “throw away society”. Almost ironically, society is increasingly involved in pollution prevention, resource consumption issues and post-consumer waste management. Clearly, a dichotomy between environmentally aware usage and consumerism exists. The current technology used to manufacture functional materials and electronic devices requires high temperatures for material deposition processes, which results in the generation of harmful chemicals and radiation. With such issues in mind, it is imperative to explore new electronic functional materials and new manufacturing pathways. Here, we explore the potential of additive layer manufacturing, inkjet printing technology which provides an innovative manufacturing pathway for functional materials (metal nanoparticles and polymers), and explore a fully printed two terminal electronic memory cell. In this work, inkjetable materials (silver (Ag) and poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS)) were first printed by a piezoelectric Epson Stylus P50 inkjet printer as stand-alone layers, and secondly as part of a metal (Ag)/active layer (PEDOT:PSS)/metal (Ag) crossbar architecture. The quality of the individual multi-layers of the printed Ag and PEDOT:PSS was first evaluated via optical microscopy and scanning electron microscopy (SEM). Furthermore, an electrical characterisation of the printed memory elements was performed using an HP4140B picoammeter

    Potential up-scaling of inkjet-printed devices for logical circuits in flexible electronics

    Get PDF
    Inkjet Technology is often mis-believed to be a deposition/patterning technology which is not meant for high fabrication throughput in the field of printed and flexible electronics. In this work, we report on the 1) printing, 2) fabrication yield and 3) characterization of exemplary simple devices e.g. capacitors, organic transistors etc. which are the basic building blocks for logical circuits. For this purpose, printing is performed first with a Proof of concept Inkjet printing system Dimatix Material Printer 2831 (DMP 2831) using 10 pL small print-heads and then with Dimatix Material Printer 3000 (DMP 3000) using 35 pL industrial print-heads (from Fujifilm Dimatix). Printing at DMP 3000 using industrial print-heads (in Sheet-to-sheet) paves the path towards industrialization which can be defined by printing in Roll-to-Roll format using industrial print-heads. This pavement can be termed as "Bridging Platform". This transfer to "Bridging Platform" from 10 pL small print-heads to 35 pL industrial print-heads help the inkjet-printed devices to evolve on the basis of functionality and also in form of up-scaled quantities. The high printed quantities and yield of inkjet-printed devices justify the deposition reliability and potential to print circuits. This reliability is very much desired when it comes to printing of circuits e.g. inverters, ring oscillator and any other planned complex logical circuits which require devices e.g. organic transistors which needs to get connected in different staged levels. Also, the up-scaled inkjet-printed devices are characterized and they reflect a domain under which they can work to their optimal status. This status is much wanted for predicting the real device functionality and integration of them into a planned circuit

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process

    Printed dose-recording tag based on organic complementary circuits and ferroelectric nonvolatile memories.

    Get PDF
    We have demonstrated a printed electronic tag that monitors time-integrated sensor signals and writes to nonvolatile memories for later readout. The tag is additively fabricated on flexible plastic foil and comprises a thermistor divider, complementary organic circuits, and two nonvolatile memory cells. With a supply voltage below 30 V, the threshold temperatures can be tuned between 0 °C and 80 °C. The time-temperature dose measurement is calibrated for minute-scale integration. The two memory bits are sequentially written in a thermometer code to provide an accumulated dose record
    corecore