2,474 research outputs found

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    The OMII Software – Demonstrations and Comparisons between two different deployments for Client-Server Distributed Systems

    No full text
    This paper describes the key elements of the OMII software and the scenarios which OMII software can be deployed to achieve distributed computing in the UK e-Science Community, where two different deployments for Client-Server distributed systems are demonstrated. Scenarios and experiments for each deployment have been described, with its advantages and disadvantages compared and analyzed. We conclude that our first deployment is more relevant for system administrators or developers, and the second deployment is more suitable for users’ perspective which they can send and check job status for hundred job submissions

    Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms

    Get PDF
    This deliverable describes the work done in task 3.1, Middleware analysis: Analysis of current middleware used in peer-to-peer and grid implementations for enhancement by catallactic mechanisms from work package 3, Middleware Implementation. The document is divided in four parts: The introduction with application scenarios and middleware requirements, Catnets middleware architecture, evaluation of existing middleware toolkits, and conclusions. -- Die Arbeit definiert Anforderungen an Grid und Peer-to-Peer Middleware Architekturen und analysiert diese auf ihre Eignung fĂŒr die prototypische Umsetzung der Katallaxie. Eine Middleware-Architektur fĂŒr die Umsetzung der Katallaxie in Application Layer Netzwerken wird vorgestellt.Grid Computing

    SIMDAT

    No full text

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Interoperability in IoT

    Full text link
    Interoperability refers to the ability of IoT systems and components to communicate and share information among them. This crucial feature is key to unlock all of the IoT paradigmÂŽs potential, including immense technological, economic, and social benefits. Interoperability is currently a major challenge in IoT, mainly due to the lack of a reference standard and the vast heterogeneity of IoT systems. IoT interoperability has also a significant importance in big data analytics because it substantively eases data processing. This chapter analyzes the critical importance of IoT interoperability, its different types, challenges to face, diverse use cases, and prospective interoperability solutions. Given that it is a complex concept that involves multiple aspects and elements of IoT, for a deeper insight, interoperability is studied across different levels of IoT systems. Furthermore, interoperability is also re-examined from a global approach among platforms and systems.GonzĂĄlez-Usach, R.; Yacchirema-Vargas, DC.; JuliĂĄn-SeguĂ­, M.; Palau Salvador, CE. (2019). Interoperability in IoT. Handbook of Research on Big Data and the IoT. 149-173. http://hdl.handle.net/10251/150250S14917
    • 

    corecore