2,463 research outputs found

    An infrastructure for building semantic web portals

    Get PDF
    In this paper, we present our KMi semantic web portal infrastructure, which supports two important tasks of semantic web portals, namely metadata extraction and data querying. Central to our infrastructure are three components: i) an automated metadata extraction tool, ASDI, which supports the extraction of high quality metadata from heterogeneous sources, ii) an ontology-driven question answering tool, AquaLog, which makes use of the domain specific ontology and the semantic metadata extracted by ASDI to answers questions in natural language format, and iii) a semantic search engine, which enhances traditional text-based searching by making use of the underlying ontologies and the extracted metadata. A semantic web portal application has been built, which illustrates the usage of this infrastructure

    A semantic web service-based architecture for the interoperability of e-government services

    Get PDF
    We propose a semantically-enhanced architecture to address the issues of interoperability and service integration in e-government web information systems. An architecture for a life event portal based on Semantic Web Services (SWS) is described. The architecture includes loosely-coupled modules organized in three distinct layers: User Interaction, Middleware and Web Services. The Middleware provides the semantic infrastructure for ontologies and SWS. In particular a conceptual model for integrating domain knowledge (Life Event Ontology), application knowledge (E-government Ontology) and service description (Service Ontology) is defined. The model has been applied to a use case scenario in e-government and the results of a system prototype have been reported to demonstrate some relevant features of the proposed approach

    Ontology Repositories

    Get PDF
    The growing use and application of ontologies in the last years has led to an increased interest of researchers and practitioners in the development of ontologies, either from scratch o by reusing existing ones. ..

    Towards improving web service repositories through semantic web techniques

    Get PDF
    The success of the Web services technology has brought topicsas software reuse and discovery once again on the agenda of software engineers. While there are several efforts towards automating Web service discovery and composition, many developers still search for services via online Web service repositories and then combine them manually. However, from our analysis of these repositories, it yields that, unlike traditional software libraries, they rely on little metadata to support service discovery. We believe that the major cause is the difficulty of automatically deriving metadata that would describe rapidly changing Web service collections. In this paper, we discuss the major shortcomings of state of the art Web service repositories and, as a solution, we report on ongoing work and ideas on how to use techniques developed in the context of the Semantic Web (ontology learning, mapping, metadata based presentation) to improve the current situation

    Development of User Warrant Ontology for Improving Online Health Information Provision

    Get PDF
    Health information portals (HIP) are gateways to reliable and personalised online health information. In practice, however, searching for information in HIP is still far from being effective due to the intricate nature of health information provision. Previous studies have shown the emerging trend of using domain ontology to address the retrieval issue in online healthcare information. Yet, the suitability of domain ontology alone for HIPs is still questionable due to the varied levels of user behaviour and preferences in information search. Inspired by this problem, we propose an ontology development method grounded on the collaboration between user warrant principles, knowledge engineering, and design science framework. The paper reports the development method and the implementation of such an user-warrant ontology that accommodates user-sensitivity into HIP. The evaluation process is conducted by domain experts responsible for portal management and validates the external semantic of the ontology according to a set of pre-defined evaluation criteria. Results from the application of this methodology to an actual HIP are also reported as this research demonstrates the potential of user warrant ontology to resolve information retrieval problem in HIP

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid

    Innovative approaches to urban data management using emerging technologies

    Get PDF
    Many characteristics of Smart cities rely on a sufficient quantity and quality of urban data. Local industry and developers can use this data for application development that improves life of all citizens. Therefore, the handling and usability of this data is a big challenge for smart cities. In this paper we investigate new approaches to urban data management using emerging technologies and give an insight on further research conducted within the EC-funded smarticipate project. Geospatial data cannot be handled well in classical relational database environments. Either they are just put in as binary large objects or have to be broken down into elementary types which can be handled by the database, in many cases resulting in a slow system, since the database technology is not really tuned for delivery on mass data as classical relational databases are optimized for online transaction processing and not analytic processing. Document-based databases provide a better performance, but still struggle with the challenge of large binary objects. Also the heterogeneity of data requires a lot of mapping and data cleansing, in some cases replication can’t be avoided. Another approach is to use Semantic Web technologies to enhance the data and build up relations and connections between entities. However, data formats such as RDF use a different approach and are not suitable for geospatial data leading to a lack on usability. Search engines are a good example of web applications with a high usability. The users must be able to find the right data and get information of related or close matches. This allows information retrieval in an easy to use fashion. The same principles should be applied to geospatial data, which would improve the usability of open data. Combined with data mining and big data technologies those principles would improve the usability of open geospatial data and even lead to new ways to use it. By helping with the interpretation of data in a certain context data is transformed into useful information. In this paper we analyse key features of open geodata portals such as linked data and machine learning in order to show ways of improving the user experience. Based on the Smarticipate projects we show afterwards as open data and geo data online and see the practical application. We also give an outlook on piloting cases where we want to evaluate, how the technologies presented in this paper can be combined to a usefull open data portal. In contrast to the previous EC-funded project urbanapi, where participative processes in smart cities where created with urban data, we go one step further with semantic web and open data. Thereby we achieve a more general approach on open data portals for spatial data and how to improve their usability. The envisioned architecture of the smarticipate project relies on file based storage and a no-copy strategy, which means that data is mostly kept in its original format, a conversion to another format is only done if necessary (e.g. the current format has limitations on domain specific attributes or the user requests a specific format). A strictly functional approach and architecture is envisioned which allows a massively parallel execution and therefore is predestined to be deployed in a cloud environment. The actual search interface uses a domain specific vocabulary which can be customised for special purposes or for users that consider their context and expertise, which should abstract from technology specific peculiarities. Also application programmers will benefit form this architecture as linked data principles will be followed extensively. For example, the JSON and JSON-LD standards will be used, so that web developers can use results of the data store directly without the need for conversion. Also links to further information will be provided within the data, so that a drill down is possible for more details. The remainder of this paper is structured as follows. After the introduction about open data and data in general we look at related work and existing open data portals. This leads to the main chapter about the key technology aspects for an easy-to-use open data portal. This is followed by Chapter five, an introduction of the EC-funded project smarticipate, in which the key technology aspects of chapter four will be included
    • …
    corecore