6,969 research outputs found

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    Theories about architecture and performance of multi-agent systems

    Get PDF
    Multi-agent systems are promising as models of organization because they are based on the idea that most work in human organizations is done based on intelligence, communication, cooperation, and massive parallel processing. They offer an alternative for system theories of organization, which are rather abstract of nature and do not pay attention to the agent level. In contrast, classical organization theories offer a rather rich source of inspiration for developing multi-agent models because of their focus on the agent level. This paper studies the plausibility of theoretical choices in the construction of multi-agent systems. Multi-agent systems have to be plausible from a philosophical, psychological, and organizational point of view. For each of these points of view, alternative theories exist. Philosophically, the organization can be seen from the viewpoints of realism and constructivism. Psychologically, several agent types can be distinguished. A main problem in the construction of psychologically plausible computer agents is the integration of response function systems with representational systems. Organizationally, we study aspects of the architecture of multi-agent systems, namely topology, system function decomposition, coordination and synchronization of agent processes, and distribution of knowledge and language characteristics among agents. For each of these aspects, several theoretical perspectives exist.

    Towards general spatial intelligence

    Get PDF
    The goal of General Spatial Intelligence is to present a unified theory to support the various aspects of spatial experience, whether physical or cognitive. We acknowledge the fact that GIScience has to assume a particular worldview, resulting from specific positions regarding metaphysics, ontology, epistemology, mind, language, cognition and representation. Implicit positions regarding these domains may allow solutions to isolated problems but often hamper a more encompassing approach. We argue that explicitly defining a worldview allows the grounding and derivation of multi-modal models, establishing precise problems, allowing falsifiability. We present an example of such a theory founded on process metaphysics, where the ontological elements are called differences. We show that a worldview has implications regarding the nature of space and, in the case of the chosen metaphysical layer, favours a model of space as true spacetime, i.e. four-dimensionality. Finally we illustrate the approach using a scenario from psychology and AI based planning

    Can Science Explain Consciousness?

    Get PDF
    For diverse reasons, the problem of phenomenal consciousness is persistently challenging. Mental terms are characteristically ambiguous, researchers have philosophical biases, secondary qualities are excluded from objective description, and philosophers love to argue. Adhering to a regime of efficient causes and third-person descriptions, science as it has been defined has no place for subjectivity or teleology. A solution to the “hard problem” of consciousness will require a radical approach: to take the point of view of the cognitive system itself. To facilitate this approach, a concept of agency is introduced along with a different understanding of intentionality. Following this approach reveals that the autopoietic cognitive system constructs phenomenality through acts of fiat, which underlie perceptual completion effects and “filling in”—and, by implication, phenomenology in general. It creates phenomenality much as we create meaning in language, through the use of symbols that it assigns meaning in the context of an embodied evolutionary history that is the source of valuation upon which meaning depends. Phenomenality is a virtual representation to itself by an executive agent (the conscious self) tasked with monitoring the state of the organism and its environment, planning future action, and coordinating various sub- agencies. Consciousness is not epiphenomenal, but serves a function for higher organisms that is distinct from that of unconscious processing. While a strictly scientific solution to the hard problem is not possible for a science that excludes the subjectivity it seeks to explain, there is hope to at least psychologically bridge the explanatory gulf between mind and matter, and perhaps hope for a broader definition of science

    Imaginative Value Sensitive Design: How Moral Imagination Exceeds Moral Law Theories in Informing Responsible Innovation

    Get PDF
    Safe-by-Design (SBD) frameworks for the development of emerging technologies have become an ever more popular means by which scholars argue that transformative emerging technologies can safely incorporate human values. One such popular SBD methodology is called Value Sensitive Design (VSD). A central tenet of this design methodology is to investigate stakeholder values and design those values into technologies during early stage research and development (R&D). To accomplish this, the VSD framework mandates that designers consult the philosophical and ethical literature to best determine how to weigh moral trade-offs. However, the VSD framework also concedes the universalism of moral values, particularly the values of freedom, autonomy, equality trust and privacy justice. This paper argues that the VSD methodology, particularly applied to nano-bio-info-cogno (NBIC) technologies, has an insufficient grounding for the determination of moral values. As such, an exploration of the value-investigations of VSD are deconstructed to illustrate both its strengths and weaknesses. This paper also provides possible modalities for the strengthening of the VSD methodology, particularly through the application of moral imagination and how moral imagination exceed the boundaries of moral intuitions in the development of novel technologies
    • …
    corecore