43,107 research outputs found

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships
    • …
    corecore