302 research outputs found

    Towards Ontology-Based Requirements Engineering for IoT-Supported Well-Being, Aging and Health

    Full text link
    Ontologies serve as a one of the formal means to represent and model knowledge in computer science, electrical engineering, system engineering and other related disciplines. Ontologies within requirements engineering may be used for formal representation of system requirements. In the Internet of Things, ontologies may be used to represent sensor knowledge and describe acquired data semantics. Designing an ontology comprehensive enough with an appropriate level of knowledge expressiveness, serving multiple purposes, from system requirements specifications to modeling knowledge based on data from IoT sensors, is one of the great challenges. This paper proposes an approach towards ontology-based requirements engineering for well-being, aging and health supported by the Internet of Things. Such an ontology design does not aim at creating a new ontology, but extending the appropriate one already existing, SAREF4EHAW, in order align with the well-being, aging and health concepts and structure the knowledge within the domain. Other contributions include a conceptual formulation for Well-Being, Aging and Health and a related taxonomy, as well as a concept of One Well-Being, Aging and Health. New attributes and relations have been proposed for the new ontology extension, along with the updated list of use cases and particular ontological requirements not covered by the original ontology. Future work envisions full specification of the new ontology extension, as well as structuring system requirements and sensor measurement parameters to follow description logic.Comment: 10 pages, 2 figures, 2 table

    An Internet of Things approach for managing smart services provided by wearable devices.

    Get PDF
    The Internet of Things (IoT) is growing at a fast pace with new devices getting connected all the time. A new emerging group of these devices are the wearable devices, and Wireless Sensor Networks are a good way to integrate them in the IoT concept and bring new experiences to the daily life activities. In this paper we present an everyday life application involving a WSN as the base of a novel context-awareness sports scenario where physiological parameters are measured and sent to the WSN by wearable devices. Applications with several hardware components introduce the problem of heterogeneity in the network. In order to integrate different hardware platforms and to introduce a service-oriented semantic middleware solution into a single application, we propose the use of an Enterprise Service Bus (ESB) as a bridge for guaranteeing interoperability and integration of the different environments, thus introducing a semantic added value needed in the world of IoT-based systems. This approach places all the data acquired (e.g., via Internet data access) at application developers disposal, opening the system to new user applications. The user can then access the data through a wide variety of devices (smartphones, tablets, computers) and Operating Systems (Android, iOS, Windows, Linux, etc.)

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Internet of Things Architectures for Enhanced Living Environments

    Get PDF
    Ambient Assisted Living (AAL) is an emerging multidisciplinary research area that aims to create an ecosystem of different types of sensors, computers, mobile devices, wireless networks, and software applications for enhanced living environments and occupational health. There are several challenges in the development and implementation of an effective AAL system, such as system architecture, human-computer interaction, ergonomics, usability, and accessibility. There are also social and ethical challenges, such as acceptance by seniors and the privacy and confidentiality that must be a requirement of AAL devices. It is also essential to ensure that technology does not replace human care and is used as a relevant complement. The Internet of Things (IoT) is a paradigm where objects are connected to the Internet and support sensing capabilities. IoT devices should be ubiquitous, recognize the context, and support intelligence capabilities closely related to AAL. Technological advances allow defining new advanced tools and platforms for real-time health monitoring and decision making in the treatment of various diseases. IoT is a suitable approach to building healthcare systems, and it provides a suitable platform for ubiquitous health services, using, for example, portable sensors to carry data to servers and smartphones for communication. Despite the potential of the IoT paradigm and technologies for healthcare systems, several challenges to be overcome still exist. The direction and impact of IoT in the economy are not clearly defined, and there are barriers to the immediate and ubiquitous adoption of IoT products, services, and solutions. Several sources of pollutants have a high impact on indoor living environments. Consequently, indoor air quality is recognized as a fundamental variable to be controlled for enhanced health and well-being. It is critical to note that typically most people occupy more than 90% of their time inside buildings, and poor indoor air quality negatively affects performance and productivity. Research initiatives are required to address air quality issues to adopt legislation and real-time inspection mechanisms to improve public health, not only to monitor public places, schools, and hospitals but also to increase the rigor of building rules. Therefore, it is necessary to use real-time monitoring systems for correct analysis of indoor air quality to ensure a healthy environment in at least public spaces. In most cases, simple interventions provided by homeowners can produce substantial positive impacts on indoor air quality, such as avoiding indoor smoking and the correct use of natural ventilation. An indoor air quality monitoring system helps the detection and improvement of air quality conditions. Local and distributed assessment of chemical concentrations is significant for safety (e.g., detection of gas leaks and monitoring of pollutants) as well as to control heating, ventilation, and HVAC systems to improve energy efficiency. Real-time indoor air quality monitoring provides reliable data for the correct control of building automation systems and should be assumed as a decision support platform on planning interventions for enhanced living environments. However, the monitoring systems currently available are expensive and only allow the collection of random samples that are not provided with time information. Most solutions on the market only allow data consulting limited to device memory and require procedures for downloading and manipulating data with specific software. In this way, the development of innovative environmental monitoring systems based on ubiquitous technologies that allow real-time analysis becomes essential. This thesis resulted in the design and development of IoT architectures using modular and scalable structures for air quality monitoring based on data collected from cost-effective sensors for enhanced living environments. The proposed architectures address several concepts, including acquisition, processing, storage, analysis, and visualization of data. These systems incorporate an alert management Framework that notifies the user in real-time in poor indoor air quality scenarios. The software Framework supports multiple alert methods, such as push notifications, SMS, and e-mail. The real-time notification system offers several advantages when the goal is to achieve effective changes for enhanced living environments. On the one hand, notification messages promote behavioral changes. These alerts allow the building manager to identify air quality problems and plan interventions to avoid unhealthy air quality scenarios. The proposed architectures incorporate mobile computing technologies such as mobile applications that provide ubiquitous air quality data consulting methods s. Also, the data is stored and can be shared with medical teams to support the diagnosis. The state-of-the-art analysis has resulted in a review article on technologies, applications, challenges, opportunities, open-source IoT platforms, and operating systems. This review was significant to define the IoT-based Framework for indoor air quality supervision. The research leads to the development and design of cost-effective solutions based on open-source technologies that support Wi-Fi communication and incorporate several advantages such as modularity, scalability, and easy installation. The results obtained are auspicious, representing a significant contribution to enhanced living environments and occupational health. Particulate matter (PM) is a complex mixture of solid and liquid particles of organic and inorganic substances suspended in the air. Moreover, it is considered the pollutant that affects more people. The most damaging particles to health are ≤PM10 (diameter 10 microns or less), which can penetrate and lodge deep within the lungs, contributing to the risk of developing cardiovascular and respiratory diseases as well as lung cancer. Taking into account the adverse health effects of PM exposure, an IoT architecture for automatic PM monitoring was proposed. The proposed architecture is a PM real-time monitoring system and a decision-making tool. The solution consists of a hardware prototype for data acquisition and a Web Framework developed in .NET for data consulting. This system is based on open-source and technologies, with several advantages compared to existing systems, such as modularity, scalability, low-cost and easy installation. The data is stored in a database developed in SQL SERVER using .NET Web services. The results show the ability of the system to analyze the indoor air quality in real-time and the potential of the Web Framework for the planning of interventions to ensure safe, healthy, and comfortable conditions. Associations of high concentrations of carbon dioxide (CO2) with low productivity at work and increased health problems are well documented. There is also a clear correlation between high levels of CO2 and high concentrations of pollutants in indoor air. There are sufficient reasons to monitor CO2 and provide real-time notifications to improve occupational health and provide a safe and healthy indoor living environment. Taking into account the significant influence of CO2 for enhanced living environments, a real-time IoT architecture for CO2 monitoring was proposed. CO2 was selected because it is easy to measure and is produced in quantity (by people and combustion equipment). It can be used as an indicator of other pollutants and, therefore, of air quality in general. The solution consists of a hardware prototype for data acquisition environment, a Web software, and a smartphone application for data consulting. The proposed architecture is based on open-source technologies, and the data is stored in a SQL SERVER database. The mobile Framework allows the user not only to consult the latest data collected but also to receive real-time notifications in poor indoor air quality scenarios, and to configure the alerts threshold levels. The results show that the mobile application not only provides easy access to real-time air quality data, but also allows the user to maintain parameter history and provide a history of changes. Consequently, this system allows the user to analyze in a precise and detailed manner the behavior of air quality. Finally, an air quality monitoring solution was implemented, consisting of a hardware prototype that incorporates only the MICS-6814 sensor as the detection unit. This system monitors various air quality parameters such as NH3 (ammonia), CO (carbon monoxide), NO2 (nitrogen dioxide), C3H8 (propane), C4H10 (butane), CH4 (methane), H2 (hydrogen) and C2H5OH (ethanol). The monitoring of the concentrations of these pollutants is essential to provide enhanced living environments. This solution is based on Cloud, and the collected data is sent to the ThingSpeak platform. The proposed Framework combines sensitivity, flexibility, and measurement accuracy in real-time, allowing a significant evolution of current air quality controls. The results show that this system provides easy, intuitive, and fast access to air quality data as well as relevant notifications in poor air quality situations to provide real-time intervention and improve occupational health. These data can be accessed by physicians to support diagnoses and correlate the symptoms and health problems of patients with the environment in which they live. As future work, the results reported in this thesis can be considered as a starting point for the development of a secure system sharing data with health professionals in order to serve as decision support in diagnosis.Ambient Assisted Living (AAL) é uma área de investigação multidisciplinar emergente que visa a construção de um ecossistema de diferentes tipos de sensores, microcontroladores, dispositivos móveis, redes sem fios e aplicações de software para melhorar os ambientes de vida e a saúde ocupacional. Existem muitos desafios no desenvolvimento e na implementação de um sistema AAL, como a arquitetura do sistema, interação humano-computador, ergonomia, usabilidade e acessibilidade. Existem também problemas sociais e éticos, como a aceitação por parte dos utilizadores mais vulneráveis e a privacidade e confidencialidade, que devem ser uma exigência de todos os dispositivos AAL. De facto, também é essencial assegurar que a tecnologia não substitua o cuidado humano e seja usada como um complemento essencial. A Internet das Coisas (IoT) é um paradigma em que os objetos estão conectados à Internet e suportam recursos sensoriais. Tendencialmente, os dispositivos IoT devem ser omnipresentes, reconhecer o contexto e ativar os recursos de inteligência ambiente intimamente relacionados ao AAL. Os avanços tecnológicos permitem definir novas ferramentas avançadas e plataformas para monitorização de saúde em tempo real e tomada de decisão no tratamento de várias doenças. A IoT é uma abordagem adequada para construir sistemas de saúde sendo que oferece uma plataforma para serviços de saúde ubíquos, usando, por exemplo, sensores portáteis para recolha e transmissão de dados e smartphones para comunicação. Apesar do potencial do paradigma e tecnologias IoT para o desenvolvimento de sistemas de saúde, muitos desafios continuam ainda por ser resolvidos. A direção e o impacto das soluções IoT na economia não está claramente definido existindo, portanto, barreiras à adoção imediata de produtos, serviços e soluções de IoT. Os ambientes de vida são caracterizados por diversas fontes de poluentes. Consequentemente, a qualidade do ar interior é reconhecida como uma variável fundamental a ser controlada de forma a melhorar a saúde e o bem-estar. É importante referir que tipicamente a maioria das pessoas ocupam mais de 90% do seu tempo no interior de edifícios e que a má qualidade do ar interior afeta negativamente o desempenho e produtividade. É necessário que as equipas de investigação continuem a abordar os problemas de qualidade do ar visando a adoção de legislação e mecanismos de inspeção que atuem em tempo real para a melhoraria da saúde e qualidade de vida, tanto em locais públicos como escolas e hospitais e residências particulares de forma a aumentar o rigor das regras de construção de edifícios. Para tal, é necessário utilizar mecanismos de monitorização em tempo real de forma a possibilitar a análise correta da qualidade do ambiente interior para garantir ambientes de vida saudáveis. Na maioria dos casos, intervenções simples que podem ser executadas pelos proprietários ou ocupantes da residência podem produzir impactos positivos substanciais na qualidade do ar interior, como evitar fumar em ambientes fechados e o uso correto de ventilação natural. Um sistema de monitorização e avaliação da qualidade do ar interior ajuda na deteção e na melhoria das condições ambiente. A avaliação local e distribuída das concentrações químicas é significativa para a segurança (por exemplo, deteção de fugas de gás e supervisão dos poluentes) bem como para controlar o aquecimento, ventilação, e sistemas de ar condicionado (HVAC) visando a melhoria da eficiência energética. A monitorização em tempo real da qualidade do ar interior fornece dados fiáveis para o correto controlo de sistemas de automação de edifícios e deve ser assumida com uma plataforma de apoio à decisão no que se refere ao planeamento de intervenções para ambientes de vida melhorados. No entanto, os sistemas de monitorização atualmente disponíveis são de alto custo e apenas permitem a recolha de amostras aleatórias que não são providas de informação temporal. A maioria das soluções disponíveis no mercado permite apenas a acesso ao histórico de dados que é limitado à memória do dispositivo e exige procedimentos de download e manipulação de dados com software proprietário. Desta forma, o desenvolvimento de sistemas inovadores de monitorização ambiente baseados em tecnologias ubíquas e computação móvel que permitam a análise em tempo real torna-se essencial. A Tese resultou na definição e no desenvolvimento de arquiteturas para monitorização da qualidade do ar baseadas em IoT. Os métodos propostos são de baixo custo e recorrem a estruturas modulares e escaláveis para proporcionar ambientes de vida melhorados. As arquiteturas propostas abordam vários conceitos, incluindo aquisição, processamento, armazenamento, análise e visualização de dados. Os métodos propostos incorporam Frameworks de gestão de alertas que notificam o utilizador em tempo real e de forma ubíqua quando a qualidade do ar interior é deficiente. A estrutura de software suporta vários métodos de notificação, como notificações remotas para smartphone, SMS (Short Message Service) e email. O método usado para o envio de notificações em tempo real oferece várias vantagens quando o objetivo é alcançar mudanças efetivas para ambientes de vida melhorados. Por um lado, as mensagens de notificação promovem mudanças de comportamento. De facto, estes alertas permitem que o gestor do edifício e os ocupantes reconheçam padrões da qualidade do ar e permitem também um correto planeamento de intervenções de forma evitar situações em que a qualidade do ar é deficiente. Por outro lado, o sistema proposto incorpora tecnologias de computação móvel, como aplicações móveis, que fornecem acesso omnipresente aos dados de qualidade do ar e, consequentemente, fornecem soluções completas para análise de dados. Além disso, os dados são armazenados e podem ser partilhados com equipas médicas para ajudar no diagnóstico. A análise do estado da arte resultou na elaboração de um artigo de revisão sobre as tecnologias, aplicações, desafios, plataformas e sistemas operativos que envolvem a criação de arquiteturas IoT. Esta revisão foi um trabalho fundamental na definição das arquiteturas propostas baseado em IoT para a supervisão da qualidade do ar interior. Esta pesquisa conduz a um desenvolvimento de arquiteturas IoT de baixo custo com base em tecnologias de código aberto que operam como um sistema Wi-Fi e suportam várias vantagens, como modularidade, escalabilidade e facilidade de instalação. Os resultados obtidos são muito promissores, representando uma contribuição significativa para ambientes de vida melhorados e saúde ocupacional. O material particulado (PM) é uma mistura complexa de partículas sólidas e líquidas de substâncias orgânicas e inorgânicas suspensas no ar e é considerado o poluente que afeta mais pessoas. As partículas mais prejudiciais à saúde são as ≤PM10 (diâmetro de 10 micrómetros ou menos), que podem penetrar e fixarem-se dentro dos pulmões, contribuindo para o risco de desenvolver doenças cardiovasculares e respiratórias, bem como de cancro do pulmão. Tendo em consideração os efeitos negativos para a saúde da exposição ao PM foi desenvolvido numa primeira fase uma arquitetura IoT para monitorização automática dos níveis de PM. Esta arquitetura é um sistema que permite monitorização de PM em tempo real e uma ferramenta de apoio à tomada de decisão. A solução é composta por um protótipo de hardware para aquisição de dados e um portal Web desenvolvido em .NET para consulta de dados. Este sistema é baseado em tecnologias de código aberto com várias vantagens em comparação aos sistemas existentes, como modularidade, escalabilidade, baixo custo e fácil instalação. Os dados são armazenados numa base de dados desenvolvida em SQL SERVER e são enviados com recurso a serviços Web. Os resultados mostram a capacidade do sistema de analisar em tempo real a qualidade do ar interior e o potencial da Framework Web para o planeamento de intervenções com o objetivo de garantir condições seguras, saudáveis e confortáveis. Associações de altas concentrações de dióxido de carbono (CO2) com défice de produtividade no trabalho e aumento de problemas de saúde encontram-se bem documentadas. Existe também uma correlação evidente entre altos níveis de CO2 e altas concentrações de poluentes no ar interior. Tendo em conta a influência significativa do CO2 para a construção de ambientes de vida melhorados desenvolveu-se uma solução de monitorização em tempo real de CO2 com base na arquitetura de IoT. A arquitetura proposta permite também o envio de notificações em tempo real para melhorar a saúde ocupacional e proporcionar um ambiente de vida interior seguro e saudável. O CO2 foi selecionado, pois é fácil de medir e é produzido em quantidade (por pessoas e equipamentos de combustão). Assim, pode ser usado como um indicador de outros poluentes e, portanto, da qualidade do ar em geral. O método proposto é composto por um protótipo de hardware para aquisição de dados, um software Web e uma aplicação smartphone para consulta de dados. Esta arquitetura é baseada em tecnologias de código aberto e os dados recolhidos são armazenados numa base de dados SQL SERVER. A Framework móvel permite não só consultar em tempo real os últimos dados recolhidos, receber notificações com o objetivo de avisar o utilizador quando a qualidade do ar está deficiente, mas também para configurar alertas. Os resultados mostram que a Framework móvel fornece não apenas acesso fácil aos dados da qualidade do ar em tempo real, mas também permite ao utilizador manter o histórico de parâmetros. Assim este sistema permite ao utilizador analisar de maneira precisa e detalhada o comportamento da qualidade do ar interior. Por último, é proposta uma arquitetura para monitorização de vários parâmetros da qualidade do ar, como NH3 (amoníaco), CO (monóxido de carbono), NO2 (dióxido de azoto), C3H8 (propano), C4H10 (butano), CH4 (metano), H2 (hidrogénio) e C2H5OH (etanol). Esta arquitetura é composta por um protótipo de hardware que incorpora unicamente o sensor MICS-6814 como unidade de deteção. O controlo das concentrações destes poluentes é extremamente relevante para proporcionar ambientes de vida melhorados. Esta solução tem base na Cloud sendo que os dados recolhidos são enviados para a plataforma ThingSpeak. Esta Framework combina sensibilidade, flexibilidade e precisão de medição em tempo real, permitindo uma evolução significativa dos atuais sistemas de monitorização da qualidade do ar. Os resultados mostram que este sistema fornece acesso fácil, intuitivo e rápido aos dados de qualidade do ar bem como notificações essenciais em situações de qualidade do ar deficiente de forma a planear intervenções em tempo útil e melhorar a saúde ocupacional. Esses dados podem ser acedidos pelos médicos para apoiar diagnósticos e correlacionar os sintomas e problemas de saúde dos pacientes com o ambiente em que estes vivem. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um sistema seguro para partilha de dados com profissionais de saúde de forma a servir de suporte à decisão no diagnóstico

    Support dementia: using wearable assistive technology and analysing real-time data

    Get PDF
    Support provided to sufferers of Dementia by the National Health Service (NHS) is mainly in the form of personal attendants such as nurses and social workers. The main focus of this paper is to present how the use of assistive technologies can help early sufferers of Dementia patients to overcome barriers in achieving their daily activities and to illustrate how data analytics, such as Complex Event Processing (CEP) in real-time can allow better monitoring of these patients. This activity will contribute to research work which is to provide a suitable framework to accurately analyse real-time data from assistive technology and wearable devices for remote healthcare, particularly monitoring early sufferers of dementia in order to promote good quality independent living

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business

    Big Data and the Internet of Things

    Full text link
    Advances in sensing and computing capabilities are making it possible to embed increasing computing power in small devices. This has enabled the sensing devices not just to passively capture data at very high resolution but also to take sophisticated actions in response. Combined with advances in communication, this is resulting in an ecosystem of highly interconnected devices referred to as the Internet of Things - IoT. In conjunction, the advances in machine learning have allowed building models on this ever increasing amounts of data. Consequently, devices all the way from heavy assets such as aircraft engines to wearables such as health monitors can all now not only generate massive amounts of data but can draw back on aggregate analytics to "improve" their performance over time. Big data analytics has been identified as a key enabler for the IoT. In this chapter, we discuss various avenues of the IoT where big data analytics either is already making a significant impact or is on the cusp of doing so. We also discuss social implications and areas of concern.Comment: 33 pages. draft of upcoming book chapter in Japkowicz and Stefanowski (eds.) Big Data Analysis: New algorithms for a new society, Springer Series on Studies in Big Data, to appea

    Internet of things in health: Requirements, issues, and gaps

    Get PDF
    Background and objectives: The Internet of Things (IoT) paradigm has been extensively applied to several sectors in the last years, ranging from industry to smart cities. In the health domain, IoT makes possible new scenarios of healthcare delivery as well as collecting and processing health data in real time from sensors in order to make informed decisions. However, this domain is complex and presents several tech- nological challenges. Despite the extensive literature about this topic, the application of IoT in healthcare scarcely covers requirements of this sector. Methods: A literature review from January 2010 to February 2021 was performed resulting in 12,108 articles. After filtering by title, abstract, and content, 86 were eligible and examined according to three requirement themes: data lifecycle; trust, security, and privacy; and human-related issues. Results: The analysis of the reviewed literature shows that most approaches consider IoT application in healthcare merely as in any other domain (industry, smart cities…), with no regard of the specific requirements of this domain. Conclusions: Future effort s in this matter should be aligned with the specific requirements and needs of the health domain, so that exploiting the capabilities of the IoT paradigm may represent a meaningful step forward in the application of this technology in healthcare.Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía P18-TPJ - 307

    Cognitive Hyperconnected Digital Transformation

    Get PDF
    Cognitive Hyperconnected Digital Transformation provides an overview of the current Internet of Things (IoT) landscape, ranging from research, innovation and development priorities to enabling technologies in a global context. It is intended as a standalone book in a series that covers the Internet of Things activities of the IERC-Internet of Things European Research Cluster, including both research and technological innovation, validation and deployment. The book builds on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT-EPI) and the IoT European Large-Scale Pilots Programme, presenting global views and state-of-the-art results regarding the challenges facing IoT research, innovation, development and deployment in the next years. Hyperconnected environments integrating industrial/business/consumer IoT technologies and applications require new IoT open systems architectures integrated with network architecture (a knowledge-centric network for IoT), IoT system design and open, horizontal and interoperable platforms managing things that are digital, automated and connected and that function in real-time with remote access and control based on Internet-enabled tools. The IoT is bridging the physical world with the virtual world by combining augmented reality (AR), virtual reality (VR), machine learning and artificial intelligence (AI) to support the physical-digital integrations in the Internet of mobile things based on sensors/actuators, communication, analytics technologies, cyber-physical systems, software, cognitive systems and IoT platforms with multiple functionalities. These IoT systems have the potential to understand, learn, predict, adapt and operate autonomously. They can change future behaviour, while the combination of extensive parallel processing power, advanced algorithms and data sets feed the cognitive algorithms that allow the IoT systems to develop new services and propose new solutions. IoT technologies are moving into the industrial space and enhancing traditional industrial platforms with solutions that break free of device-, operating system- and protocol-dependency. Secure edge computing solutions replace local networks, web services replace software, and devices with networked programmable logic controllers (NPLCs) based on Internet protocols replace devices that use proprietary protocols. Information captured by edge devices on the factory floor is secure and accessible from any location in real time, opening the communication gateway both vertically (connecting machines across the factory and enabling the instant availability of data to stakeholders within operational silos) and horizontally (with one framework for the entire supply chain, across departments, business units, global factory locations and other markets). End-to-end security and privacy solutions in IoT space require agile, context-aware and scalable components with mechanisms that are both fluid and adaptive. The convergence of IT (information technology) and OT (operational technology) makes security and privacy by default a new important element where security is addressed at the architecture level, across applications and domains, using multi-layered distributed security measures. Blockchain is transforming industry operating models by adding trust to untrusted environments, providing distributed security mechanisms and transparent access to the information in the chain. Digital technology platforms are evolving, with IoT platforms integrating complex information systems, customer experience, analytics and intelligence to enable new capabilities and business models for digital business
    corecore