45,083 research outputs found

    An Ontology-Based Recommender System with an Application to the Star Trek Television Franchise

    Full text link
    Collaborative filtering based recommender systems have proven to be extremely successful in settings where user preference data on items is abundant. However, collaborative filtering algorithms are hindered by their weakness against the item cold-start problem and general lack of interpretability. Ontology-based recommender systems exploit hierarchical organizations of users and items to enhance browsing, recommendation, and profile construction. While ontology-based approaches address the shortcomings of their collaborative filtering counterparts, ontological organizations of items can be difficult to obtain for items that mostly belong to the same category (e.g., television series episodes). In this paper, we present an ontology-based recommender system that integrates the knowledge represented in a large ontology of literary themes to produce fiction content recommendations. The main novelty of this work is an ontology-based method for computing similarities between items and its integration with the classical Item-KNN (K-nearest neighbors) algorithm. As a study case, we evaluated the proposed method against other approaches by performing the classical rating prediction task on a collection of Star Trek television series episodes in an item cold-start scenario. This transverse evaluation provides insights into the utility of different information resources and methods for the initial stages of recommender system development. We found our proposed method to be a convenient alternative to collaborative filtering approaches for collections of mostly similar items, particularly when other content-based approaches are not applicable or otherwise unavailable. Aside from the new methods, this paper contributes a testbed for future research and an online framework to collaboratively extend the ontology of literary themes to cover other narrative content.Comment: 25 pages, 6 figures, 5 tables, minor revision

    An Ontological Basis for Design Methods

    Get PDF
    This paper presents a view of design methods as process artefacts that can be represented using the function-behaviour-structure (FBS) ontology. This view allows identifying five fundamental approaches to methods: black-box, procedural, artefact-centric, formal and managerial approaches. They all describe method structure but emphasise different aspects of it. Capturing these differences addresses common terminological confusions relating to methods. The paper provides an overview of the use of the fundamental method approaches for different purposes in designing. In addition, the FBS ontology is used for developing a notion of prescriptiveness of design methods as an aggregate construct defined along four dimensions: certainty, granularity, flexibility and authority. The work presented in this paper provides an ontological basis for describing, understanding and managing design methods throughout their life cycle. Keywords: Design Methods; Function-Behaviour-Structure (FBS) Ontology; Prescriptive Design Knowledge</p

    An Ontological Approach to Representing the Product Life Cycle

    Get PDF
    The ability to access and share data is key to optimizing and streamlining any industrial production process. Unfortunately, the manufacturing industry is stymied by a lack of interoperability among the systems by which data are produced and managed, and this is true both within and across organizations. In this paper, we describe our work to address this problem through the creation of a suite of modular ontologies representing the product life cycle and its successive phases, from design to end of life. We call this suite the Product Life Cycle (PLC) Ontologies. The suite extends proximately from The Common Core Ontologies (CCO) used widely in defense and intelligence circles, and ultimately from the Basic Formal Ontology (BFO), which serves as top level ontology for the CCO and for some 300 further ontologies. The PLC Ontologies were developed together, but they have been factored to cover particular domains such as design, manufacturing processes, and tools. We argue that these ontologies, when used together with standard public domain alignment and browsing tools created within the context of the Semantic Web, may offer a low-cost approach to solving increasingly costly problems of data management in the manufacturing industry

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Modeling an ontology on accessible evacuation routes for emergencies

    Get PDF
    Providing alert communication in emergency situations is vital to reduce the number of victims. However, this is a challenging goal for researchers and professionals due to the diverse pool of prospective users, e.g. people with disabilities as well as other vulnerable groups. Moreover, in the event of an emergency situation, many people could become vulnerable because of exceptional circumstances such as stress, an unknown environment or even visual impairment (e.g. fire causing smoke). Within this scope, a crucial activity is to notify affected people about safe places and available evacuation routes. In order to address this need, we propose to extend an ontology, called SEMA4A (Simple EMergency Alert 4 [for] All), developed in a previous work for managing knowledge about accessibility guidelines, emergency situations and communication technologies. In this paper, we introduce a semi-automatic technique for knowledge acquisition and modeling on accessible evacuation routes. We introduce a use case to show applications of the ontology and conclude with an evaluation involving several experts in evacuation procedures. © 2014 Elsevier Ltd. All rights reserved
    • …
    corecore