894 research outputs found

    Generic unified modelling process for developing semantically rich, dynamic and temporal models

    Get PDF
    Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models

    A manufacturing core concepts ontology to support knowledge sharing

    Get PDF
    Knowledge sharing across domains is key to bringing down the cost of production and the time to market of products. This thesis is directed to improve the knowledge sharing capability of the present systems that use information and communication technologies. Systems for different domains have structures that are made up of concepts and relations with different semantic interpretations. Therefore, knowledge sharing across such domains becomes an issue. Knowledge sharing across multiple domains can be facilitated through a system that can provide a shared understanding across multiple domains. This requires a rigorous common semantic base underlying the domains across which to share knowledge. [Continues.

    ImagineD : a vision for cognitive driven creative design

    Get PDF
    CAD systems are well suited to later design phases, but do not effec-tively support the early ambiguous, iterative, and creative stages of de-sign. CAD is continually evolving, but only incrementally and by adapting to established design processes. We present a radically new vision for creative design – ImagineD – based on advances in HCI technology. In this vision, the designer is symbiotically connected to supporting computer systems via brain-computer and gesture recogni-tion interfaces, and the design process is directly driven by the design-er’s cognition (via neural signals) and natural behaviour (via intuitive gestures). Realising this vision requires advances in scientific models of cognition, neural activity, and gesture interaction in creative design. The paper presents the work and visions of the University of Strath-clyde, covering earlier CAD work before presenting ongoing empirical and theoretical research in the above areas by the ImagineD team. We conclude with key challenges

    A Design Science Research Methodology for Expert Systems Development

    Get PDF
    The knowledge of design science research (DSR) can have applications for improving expert systems (ES) development research. Although significant progress of utilising DSR has been observed in particular information systems design – such as decision support systems (DSS) studies – only rare attempts can be found in the ES design literature. Therefore, the aim of this study is to investigate the use of DSR for ES design. First, we explore the ES development literature to reveal the presence of DSR as a research methodology. For this, we select relevant literature criteria and apply a qualitative content analysis in order to generate themes inductively to match the DSR components. Second, utilising the findings of the comparison, we determine a new DSR approach for designing a specific ES that is guided by another result – the findings of a content analysis of examination scripts in Mathematics. The specific ES artefact for a case demonstration is designed for addressing the requirement of a ‘wicked’ problem in that the key purpose is to assist human assessors when evaluating multi-step question (MSQ) solutions. It is anticipated that the proposed design knowledge, in terms of both problem class and functions of ES artefacts, will help ES designers and researchers to address similar issues for designing information system solutions

    IT-CODE:IT in COllaborative DEsign

    Get PDF

    Design as interactions of problem framing and problem solving: a formal and empirical basis for problem framing in design

    Get PDF
    In this thesis, I present, illustrate and empirically validate a novel approach to modelling and explaining design process. The main outcome of this work is the formal definition of the problem framing, and the formulation of a recursive model of framing in design. The model (code-named RFD), represents a formalisation of a grey area in the science of design, and sees the design process as a recursive interaction of problem framing and problem solving. The proposed approach is based upon a phenomenon introduced in cognitive science and known as (reflective) solution talkback. Previously, there were no formalisations of the knowledge interactions occurring within this complex reasoning operation. The recursive model is thus an attempt to express the existing knowledge in a formal and structured manner. In spite of rather abstract, knowledge level on which the model is defined, it is a firm step in the clarification of design process. The RFD model is applied to the knowledge-level description of the conducted experimental study that is annotated and analysed in the defined terminology. Eventually, several schemas implied by the model are identified, exemplified, and elaborated to reflect the empirical results. The model features the mutual interaction of predicates ‘specifies’ and ‘satisfies’. The first asserts that a certain set of explicit statements is sufficient for expressing relevant desired states the design is aiming to achieve. The validity of predicate ‘specifies’ might not be provable directly in any problem solving theory. A particular specification can be upheld or rejected only by drawing upon the validity of a complementary predicate ‘satisfies’ and the (un-)acceptability of the considered candidate solution (e.g. technological artefact, product). It is the role of the predicate ‘satisfies’ to find and derive such a candidate solution. The predicates ‘specifies’ and ‘satisfies’ are contextually bound and can be evaluated only within a particular conceptual frame. Thus, a solution to the design problem is sound and admissible with respect to an explicit commitment to a particular specification and design frame. The role of the predicate ‘acceptable’ is to compare the admissible solutions and frames against the ‘real’ design problem. As if it answered the question: “Is this solution really what I wanted/intended?” Furthermore, I propose a set of principled schemas on the conceptual (knowledge) level with an aim to make the interactive patterns of the design process explicit. These conceptual schemas are elicited from the rigorous experiments that utilised the structured and principled approach to recording the designer’s conceptual reasoning steps and decisions. They include the refinement of an explicit problem specification within a conceptual frame; the refinement of an explicit problem specification using a re-framed reference; and the conceptual re-framing (i.e. the identification and articulation of new conceptual terms) Since the conceptual schemas reflect the sequence of the ‘typical’ decisions the designer may make during the design process, there is no single, symbol-level method for the implementation of these conceptual patterns. Thus, when one decides to follow the abstract patterns and schemas, this abstract model alone can foster a principled design on the knowledge level. It must be acknowledged that for the purpose of computer-based support, these abstract schemas need to be turned into operational models and consequently suitable methods. However, such operational perspective was beyond the time and resource constraints placed on this research

    An ontology-based holistic approach for multi-objective sustainable structural design

    Get PDF
    Building construction industry has significant impact on sustainability. The construction, operation and maintenance of buildings account for approximately 50% of global energy usage and anthropogenic greenhouse gas (GHG) emissions. In recent years, the embodied energy and carbon are identified increasingly important in terms of sustainability throughout building life cycle. Incorporation of sustainable development in building structural design becomes undoubtedly crucial. The effective building design requires smart and holistic tools that can process multi-objective and inter-connected domain knowledge to provide genuine sustainable buildings. With the advancement of information and communication technologies, various methods and techniques have been applied to accomplish the multiple objectives of sustainable development in building design. One of the most successful approaches is building information modelling (BIM), which requires further enhancement of interoperability. The emergence of Semantic Web technology provides more opportunity to improve the information modelling, knowledge management and system integration. The research presented in this thesis investigates how ontology and Semantic Web rules can be used in a knowledge-based holistic system, in order to integrate information about structural design and sustainability, and facilitate decision-making in design process by recommending appropriate solutions for different use cases. A research prototype namely OntoSCS incorporating OWL ontology and SWRL rules has been developed and tested in typical structural design cases. The holistic approach considers five inter-connected dimensions of sustainability, including structural feasibility, embodied energy and carbon, cost, durability and safety. In addition, the selection of structural material supplier and criteria in sustainability assessment are taken into account as well. This research concludes that the Semantic Web technology can be applied to structural design at early stage to provide multi-criteria optimised solution. The methodology and framework employed in this study can be further adapted as a generic multi-criteria and holistic decision support system for other domains in construction sector

    A framework to support semantic interoperability in product design and manufacture

    Get PDF
    It has been recognised that the ability to communicate the meaning of concepts and their intent within and across system boundaries, for supporting key decisions in product design and manufacture, is impaired by the semantic interoperability issues that are presently encountered. This work contributes to the field of semantic interoperability in product design and manufacture. An attribution is made to the understanding and application of relevant concepts coming from the computer science world, notably ontology-based approaches, to help resolve semantic interoperability problems. A novel ontological approach, identified as the Semantic Manufacturing Interoperability Framework (SMIF), has been proposed following an exploration of the important requirements to be satisfied. The framework, built on top of a Common Logic-based ontological formalism, consists of a manufacturing foundation to capture the semantics of core feature-based design and manufacture concepts, over which the specialisation of domain models can take place. Furthermore, the framework supports the mechanisms for allowing the reconciliation of semantics, thereby improving the knowledge sharing capability between heterogeneous domains that need to interoperate and have been based on the same manufacturing foundation. This work also analyses a number of test case scenarios, where the framework has been deployed for fostering knowledge representation and reconciliation of models involving products with standard hole features and their related machining process sequences. The test cases have shown that the Semantic Manufacturing Interoperability Framework (SMIF) provides effective support towards achieving semantic interoperability in product design and manufacture. Proposed extensions to the framework are additionally identified so as to provide a view on imminent future work.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design research in the Netherlands

    Get PDF
    • 

    corecore