4,595 research outputs found

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Developing an open data portal for the ESA climate change initiative

    Get PDF
    We introduce the rationale for, and architecture of, the European Space Agency Climate Change Initiative (CCI) Open Data Portal (http://cci.esa.int/data/). The Open Data Portal hosts a set of richly diverse datasets – 13 “Essential Climate Variables” – from the CCI programme in a consistent and harmonised form and to provides a single point of access for the (>100 TB) data for broad dissemination to an international user community. These data have been produced by a range of different institutions and vary across both scientific and spatio-temporal characteristics. This heterogeneity of the data together with the range of services to be supported presented significant technical challenges. An iterative development methodology was key to tackling these challenges: the system developed exploits a workflow which takes data that conforms to the CCI data specification, ingests it into a managed archive and uses both manual and automatically generated metadata to support data discovery, browse, and delivery services. It utilises both Earth System Grid Federation (ESGF) data nodes and the Open Geospatial Consortium Catalogue Service for the Web (OGC-CSW) interface, serving data into both the ESGF and the Global Earth Observation System of Systems (GEOSS). A key part of the system is a new vocabulary server, populated with CCI specific terms and relationships which integrates OGC-CSW and ESGF search services together, developed as part of a dialogue between domain scientists and linked data specialists. These services have enabled the development of a unified user interface for graphical search and visualisation – the CCI Open Data Portal Web Presence

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    The DIGMAP geo-temporal web gazetteer service

    Get PDF
    This paper presents the DIGMAP geo-temporal Web gazetteer service, a system providing access to names of places, historical periods, and associated geo-temporal information. Within the DIGMAP project, this gazetteer serves as the unified repository of geographic and temporal information, assisting in the recognition and disambiguation of geo-temporal expressions over text, as well as in resource searching and indexing. We describe the data integration methodology, the handling of temporal information and some of the applications that use the gazetteer. Initial evaluation results show that the proposed system can adequately support several tasks related to geo-temporal information extraction and retrieval

    MusA: Using Indoor Positioning and Navigation to Enhance Cultural Experiences in a museum

    Get PDF
    In recent years there has been a growing interest into the use of multimedia mobile guides in museum environments. Mobile devices have the capabilities to detect the user context and to provide pieces of information suitable to help visitors discovering and following the logical and emotional connections that develop during the visit. In this scenario, location based services (LBS) currently represent an asset, and the choice of the technology to determine users' position, combined with the definition of methods that can effectively convey information, become key issues in the design process. In this work, we present MusA (Museum Assistant), a general framework for the development of multimedia interactive guides for mobile devices. Its main feature is a vision-based indoor positioning system that allows the provision of several LBS, from way-finding to the contextualized communication of cultural contents, aimed at providing a meaningful exploration of exhibits according to visitors' personal interest and curiosity. Starting from the thorough description of the system architecture, the article presents the implementation of two mobile guides, developed to respectively address adults and children, and discusses the evaluation of the user experience and the visitors' appreciation of these application

    Towards Exascale Scientific Metadata Management

    Full text link
    Advances in technology and computing hardware are enabling scientists from all areas of science to produce massive amounts of data using large-scale simulations or observational facilities. In this era of data deluge, effective coordination between the data production and the analysis phases hinges on the availability of metadata that describe the scientific datasets. Existing workflow engines have been capturing a limited form of metadata to provide provenance information about the identity and lineage of the data. However, much of the data produced by simulations, experiments, and analyses still need to be annotated manually in an ad hoc manner by domain scientists. Systematic and transparent acquisition of rich metadata becomes a crucial prerequisite to sustain and accelerate the pace of scientific innovation. Yet, ubiquitous and domain-agnostic metadata management infrastructure that can meet the demands of extreme-scale science is notable by its absence. To address this gap in scientific data management research and practice, we present our vision for an integrated approach that (1) automatically captures and manipulates information-rich metadata while the data is being produced or analyzed and (2) stores metadata within each dataset to permeate metadata-oblivious processes and to query metadata through established and standardized data access interfaces. We motivate the need for the proposed integrated approach using applications from plasma physics, climate modeling and neuroscience, and then discuss research challenges and possible solutions

    The Semantic Web in Federated Information Systems: A Space Physics Case Study

    Get PDF
    This paper presents a new theoretical contribution that provides a middle-of-the-road approach to formal ontologies in federated information systems. NASA’s space physics domain, like many other domains, is relatively unfamiliar with the emerging Semantic Web. This work offers a new framework that garners the benefits of formal logic yet shields participants and users from the details of the technology. Moreover, the results of a case study involving the utilization of the Semantic Web within NASA’s space physics domain are presented. A real-world search and retrieval system, relying on relational database technology, is compared against a near identical system that incorporates a formal ontology. The efficiency, efficacy, and implementation details of the Semantic Web are compared against the established relational database technology

    Towards global data products of Essential Biodiversity Variables on species traits

    Get PDF
    Essential Biodiversity Variables (EBVs) allow observation and reporting of global biodiversity change, but a detailed framework for the empirical derivation of specific EBVs has yet to be developed. Here, we re-examine and refine the previous candidate set of species traits EBVs and show how traits related to phenology, morphology, reproduction, physiology and movement can contribute to EBV operationalization. The selected EBVs express intra-specific trait variation and allow monitoring of how organisms respond to global change. We evaluate the societal relevance of species traits EBVs for policy targets and demonstrate how open, interoperable and machine-readable trait data enable the building of EBV data products. We outline collection methods, meta(data) standardization, reproducible workflows, semantic tools and licence requirements for producing species traits EBVs. An operationalization is critical for assessing progress towards biodiversity conservation and sustainable development goals and has wide implications for data-intensive science in ecology, biogeography, conservation and Earth observation
    corecore