4,281 research outputs found

    Chemical information matters: an e-Research perspective on information and data sharing in the chemical sciences

    No full text
    Recently, a number of organisations have called for open access to scientific information and especially to the data obtained from publicly funded research, among which the Royal Society report and the European Commission press release are particularly notable. It has long been accepted that building research on the foundations laid by other scientists is both effective and efficient. Regrettably, some disciplines, chemistry being one, have been slow to recognise the value of sharing and have thus been reluctant to curate their data and information in preparation for exchanging it. The very significant increases in both the volume and the complexity of the datasets produced has encouraged the expansion of e-Research, and stimulated the development of methodologies for managing, organising, and analysing "big data". We review the evolution of cheminformatics, the amalgam of chemistry, computer science, and information technology, and assess the wider e-Science and e-Research perspective. Chemical information does matter, as do matters of communicating data and collaborating with data. For chemistry, unique identifiers, structure representations, and property descriptors are essential to the activities of sharing and exchange. Open science entails the sharing of more than mere facts: for example, the publication of negative outcomes can facilitate better understanding of which synthetic routes to choose, an aspiration of the Dial-a-Molecule Grand Challenge. The protagonists of open notebook science go even further and exchange their thoughts and plans. We consider the concepts of preservation, curation, provenance, discovery, and access in the context of the research lifecycle, and then focus on the role of metadata, particularly the ontologies on which the emerging chemical Semantic Web will depend. Among our conclusions, we present our choice of the "grand challenges" for the preservation and sharing of chemical information

    PERICLES Deliverable 4.3:Content Semantics and Use Context Analysis Techniques

    Get PDF
    The current deliverable summarises the work conducted within task T4.3 of WP4, focusing on the extraction and the subsequent analysis of semantic information from digital content, which is imperative for its preservability. More specifically, the deliverable defines content semantic information from a visual and textual perspective, explains how this information can be exploited in long-term digital preservation and proposes novel approaches for extracting this information in a scalable manner. Additionally, the deliverable discusses novel techniques for retrieving and analysing the context of use of digital objects. Although this topic has not been extensively studied by existing literature, we believe use context is vital in augmenting the semantic information and maintaining the usability and preservability of the digital objects, as well as their ability to be accurately interpreted as initially intended.PERICLE

    Towards natural language question generation for the validation of ontologies and mappings

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The increasing number of open-access ontologies and their key role in several applications such as decision-support systems highlight the importance of their validation. Human expertise is crucial for the validation of ontologies from a domain point-of-view. However, the growing number of ontologies and their fast evolution over time make manual validation challenging. Methods: We propose a novel semi-automatic approach based on the generation of natural language (NL) questions to support the validation of ontologies and their evolution. The proposed approach includes the automatic generation, factorization and ordering of NL questions from medical ontologies. The final validation and correction is performed by submitting these questions to domain experts and automatically analyzing their feedback. We also propose a second approach for the validation of mappings impacted by ontology changes. The method exploits the context of the changes to propose correction alternatives presented as Multiple Choice Questions. Results: This research provides a question optimization strategy to maximize the validation of ontology entities with a reduced number of questions. We evaluate our approach for the validation of three medical ontologies. We also evaluate the feasibility and efficiency of our mappings validation approach in the context of ontology evolution. These experiments are performed with different versions of SNOMED-CT and ICD9. Conclusions: The obtained experimental results suggest the feasibility and adequacy of our approach to support the validation of interconnected and evolving ontologies. Results also suggest that taking into account RDFS and OWL entailment helps reducing the number of questions and validation time. The application of our approach to validate mapping evolution also shows the difficulty of adapting mapping evolution over time and highlights the importance of semi-automatic validation.The increasing number of open-access ontologies and their key role in several applications such as decision-support systems highlight the importance of their validation. Human expertise is crucial for the validation of ontologies from a domain point-of-vi7115FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)2014/14890-

    EDAM: an ontology of bioinformatics operations, types of data and identifiers, topics and formats

    Get PDF
    Motivation: Advancing the search, publication and integration of bioinformatics tools and resources demands consistent machine-understandable descriptions. A comprehensive ontology allowing such descriptions is therefore required. Results: EDAM is an ontology of bioinformatics operations (tool or workflow functions), types of data and identifiers, application domains and data formats. EDAM supports semantic annotation of diverse entities such as Web services, databases, programmatic libraries, standalone tools, interactive applications, data schemas, datasets and publications within bioinformatics. EDAM applies to organizing and finding suitable tools and data and to automating their integration into complex applications or workflows. It includes over 2200 defined concepts and has successfully been used for annotations and implementations. Availability: The latest stable version of EDAM is available in OWL format from http://edamontology.org/EDAM.owl and in OBO format from http://edamontology.org/EDAM.obo. It can be viewed online at the NCBO BioPortal and the EBI Ontology Lookup Service. For documentation and license please refer to http://edamontology.org. This article describes version 1.2 available at http://edamontology.org/EDAM_1.2.owl.publishedVersio

    Structuring research methods and data with the research object model:genomics workflows as a case study

    Get PDF
    Background: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e. g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. Results: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". Conclusions: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. Availability: The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/r

    A provenance-based semantic approach to support understandability, reproducibility, and reuse of scientific experiments

    Get PDF
    Understandability and reproducibility of scientific results are vital in every field of science. Several reproducibility measures are being taken to make the data used in the publications findable and accessible. However, there are many challenges faced by scientists from the beginning of an experiment to the end in particular for data management. The explosive growth of heterogeneous research data and understanding how this data has been derived is one of the research problems faced in this context. Interlinking the data, the steps and the results from the computational and non-computational processes of a scientific experiment is important for the reproducibility. We introduce the notion of end-to-end provenance management'' of scientific experiments to help scientists understand and reproduce the experimental results. The main contributions of this thesis are: (1) We propose a provenance modelREPRODUCE-ME'' to describe the scientific experiments using semantic web technologies by extending existing standards. (2) We study computational reproducibility and important aspects required to achieve it. (3) Taking into account the REPRODUCE-ME provenance model and the study on computational reproducibility, we introduce our tool, ProvBook, which is designed and developed to demonstrate computational reproducibility. It provides features to capture and store provenance of Jupyter notebooks and helps scientists to compare and track their results of different executions. (4) We provide a framework, CAESAR (CollAborative Environment for Scientific Analysis with Reproducibility) for the end-to-end provenance management. This collaborative framework allows scientists to capture, manage, query and visualize the complete path of a scientific experiment consisting of computational and non-computational steps in an interoperable way. We apply our contributions to a set of scientific experiments in microscopy research projects
    • …
    corecore