8,120 research outputs found

    An Online Tree-Based Approach for Mining Non-Stationary High-Speed Data Streams

    Get PDF
     This paper presents a new learning algorithm for inducing decision trees from data streams. In these domains, large amounts of data are constantly arriving over time, possibly at high speed. The proposed algorithm uses a top-down induction method for building trees, splitting leaf nodes recursively, until none of them can be expanded. The new algorithm combines two split methods in the tree induction. The first method is able to guarantee, with statistical significance, that each split chosen would be the same as that chosen using infinite examples. By doing so, it aims at ensuring that the tree induced online is close to the optimal model. However, this split method often needs too many examples to make a decision about the best split, which delays the accuracy improvement of the online predictive learning model. Therefore, the second method is used to split nodes more quickly, speeding up the tree growth. The second split method is based on the observation that larger trees are able to store more information about the training examples and to represent more complex concepts. The first split method is also used to correct splits previously suggested by the second one, when it has sufficient evidence. Finally, an additional procedure rebuilds the tree model according to the suggestions made with an adequate level of statistical significance. The proposed algorithm is empirically compared with several well-known induction algorithms for learning decision trees from data streams. In the tests it is possible to observe that the proposed algorithm is more competitive in terms of accuracy and model size using various synthetic and real world datasets.  

    Heuristics Miners for Streaming Event Data

    Full text link
    More and more business activities are performed using information systems. These systems produce such huge amounts of event data that existing systems are unable to store and process them. Moreover, few processes are in steady-state and due to changing circumstances processes evolve and systems need to adapt continuously. Since conventional process discovery algorithms have been defined for batch processing, it is difficult to apply them in such evolving environments. Existing algorithms cannot cope with streaming event data and tend to generate unreliable and obsolete results. In this paper, we discuss the peculiarities of dealing with streaming event data in the context of process mining. Subsequently, we present a general framework for defining process mining algorithms in settings where it is impossible to store all events over an extended period or where processes evolve while being analyzed. We show how the Heuristics Miner, one of the most effective process discovery algorithms for practical applications, can be modified using this framework. Different stream-aware versions of the Heuristics Miner are defined and implemented in ProM. Moreover, experimental results on artificial and real logs are reported

    Improving adaptive bagging methods for evolving data streams

    Get PDF
    We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive Trees, trees that can adaptively learn from data streams that change over time. To speed up the time for adapting to change of Adaptive-Size Hoeffding Tree (ASHT) Bagging, we add an error change detector for each classifier. We test our improvements by performing an evaluation study on synthetic and real-world datasets comprising up to ten million examples

    Finding and tracking multi-density clusters in an online dynamic data stream

    Get PDF
    The file attached to this record is the author's final peer reviewed version.Change is one of the biggest challenges in dynamic stream mining. From a data-mining perspective, adapting and tracking change is desirable in order to understand how and why change has occurred. Clustering, a form of unsupervised learning, can be used to identify the underlying patterns in a stream. Density-based clustering identifies clusters as areas of high density separated by areas of low density. This paper proposes a Multi-Density Stream Clustering (MDSC) algorithm to address these two problems; the multi-density problem and the problem of discovering and tracking changes in a dynamic stream. MDSC consists of two on-line components; discovered, labelled clusters and an outlier buffer. Incoming points are assigned to a live cluster or passed to the outlier buffer. New clusters are discovered in the buffer using an ant-inspired swarm intelligence approach. The newly discovered cluster is uniquely labelled and added to the set of live clusters. Processed data is subject to an ageing function and will disappear when it is no longer relevant. MDSC is shown to perform favourably to state-of-the-art peer stream-clustering algorithms on a range of real and synthetic data-streams. Experimental results suggest that MDSC can discover qualitatively useful patterns while being scalable and robust to noise

    Boosting Classifiers for Drifting Concepts

    Get PDF
    This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. --

    Combining similarity in time and space for training set formation under concept drift

    Get PDF
    Concept drift is a challenge in supervised learning for sequential data. It describes a phenomenon when the data distributions change over time. In such a case accuracy of a classifier benefits from the selective sampling for training. We develop a method for training set selection, particularly relevant when the expected drift is gradual. Training set selection at each time step is based on the distance to the target instance. The distance function combines similarity in space and in time. The method determines an optimal training set size online at every time step using cross validation. It is a wrapper approach, it can be used plugging in different base classifiers. The proposed method shows the best accuracy in the peer group on the real and artificial drifting data. The method complexity is reasonable for the field applications
    corecore