967 research outputs found

    An Online Simplified Rotor Resistance Estimator for Induction Motors

    Full text link

    Investigation of Motor Supply Signature Analysis to Detect Motor Resistance Imbalances

    Get PDF
    The trend to use inverter drives in industry is well established. It is desirable to monitor the condition of the motor/drive combination with the minimum of system intervention and at the same time retaining compatibility with the latest generation of AC PWM vector drives. This paper studies the effect of stator resistance asymmetry on the performance of the motor driven by a latest-generation unmodified AC PWM drive under varying speed conditions. The asymmetry of increased resistance in one phase is intended to simulate the onset of a failing connection between drive and motor but one that is non-critical and will remain undetected in use because the resistance increase is small and does not appear to affect the motor operation significantly. The performance is compared against baseline motor data for the resistance increase. Moreover, it is also examined following an auto-tune on the drive with the asymmetric motor in order to observe if any effects of resistance imbalance can be shown on the sensorless vector control algorithms. Initial results from the motor tests clearly show a difference in values measured from the motor current and voltage signals, which can be a useful indication of the asymmetry of the drive system

    Data-driven online temperature compensation for robust field-oriented torque-controlled induction machines

    Get PDF
    Squirrel-cage induction machines (IMs) with indirect field-oriented control are widely used in industry and are frequently chosen for their accurate and dynamic torque control. During operation, however, temperature rises leading to changes in machine parameters. The rotor resistance, in particular, alters, affecting the accuracy of the torque control. The authors investigated the effect of a rotor resistance parameter mismatch in the control algorithm on the angular rotor flux misalignment and the subsequent deviation of stator currents and motor torque from their setpoints. Hence, an online, data-driven torque compensation to eliminate the temperature effect is proposed to enable robust torque-controlled IMs. A model-based analysis and experimental mapping of the temperature effect on motor torque is presented. A temperature-torque lookup-table is subsequently implemented within the control algorithm demonstrating the ability to reduce the detrimental effect of temperature on torque control. Experimental results on a 5.5 kW squirrel-cage induction motor show that the proposed data-driven online temperature compensation method is able to reduce torque mismatch when compared to having no temperature compensation. Up to 17% torque mismatch is reduced at nominal torque and even up to 23% at torque setpoints that are lower than 20% of the nominal torque. A limited torque error of <1% remains in a broad operating range

    Machine Model Based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: a Survey

    Full text link
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space

    Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking

    Get PDF
    The ill-convergence of multiparameter estimation due to the rank-deficient state equations of permanent-magnet synchronous machines (PMSMs) is investigated. It is verified that the PMSM model for multiparameter estimation under id = 0 control is rank deficient for simultaneously estimating winding resistance, rotor flux linkage, and winding inductance and cannot ensure them to converge to the correct parameter values. A new method is proposed based on injecting a short pulse of negative id current and simultaneously solving two sets of simplified PMSM state equations corresponding to id = 0 and id ≠ 0 by using an Adaline neural network. The convergence of solutions is ensured, while the minimum |i d| is determined from the error analysis for nonsalient-pole PMSMs. The proposed method does not need the nominal value of any parameter and only needs to sample the winding terminal currents and voltages, and the rotor speed for simultaneously estimating the dq-axis inductances, the winding resistance, and the rotor flux linkage in nonsalient-pole PMSMs. Compared with existing methods, the proposed method can eliminate the estimation error caused by the variation of rotor flux linkage and inductance as a result of state change due to the injected d-axis current in the surface-mounted PMSM. The method is verified by experiments, and the results show that the proposed method has negligible influence on output torque and rotor speed and has good performance in tracking the variation of PMSM parameters due to temperature variation. © 2010 IEEE

    A New Induction Motor Adaptive Robust Vector Control based on Backstepping

    Get PDF
    In this paper, a novel approach to nonlinear control of induction machine, recursive on-line estimation of rotor time constant and load torque are developed. The proposed strategy combines Integrated Backstepping and Indirect Field Oriented Controls. The proposed approach is used to design controllers for the rotor flux and speed, estimate the values of rotor time constant and load torque and track their changes on-line. An open loop estimator is used to estimate the rotor flux. Simulation results are presented which demonstrate the effectiveness of the control technique and on-line estimation

    Parameter estimation for condition monitoring of PMSM stator winding and rotor permanent magnets

    Get PDF
    Winding resistance and rotor flux linkage are important to controller design and condition monitoring of a surface-mounted permanent-magnet synchronous machine (PMSM) system. In this paper, an online method for simultaneously estimating the winding resistance and rotor flux linkage of a PMSM is proposed, which is suitable for application under constant load torque. It is based on a proposed full-rank reference/variable model. Under constant load torque, a short pulse of id 0 is transiently injected into the d-axis current, and two sets of machine rotor speeds, currents, and voltages corresponding to id = 0 and id 0 are then measured for estimation. Since the torque is kept almost constant during the transient injection, owing to the moment of system inertia and negligible reluctance torque, the variation of rotor flux linkage due to injected id 0 can be taken into account by using the equation of constant torque without measuring the load torque and is then associated with the two sets of machine equations for simultaneously estimating the winding resistance and rotor flux linkage. Furthermore, the proposed method does not need the values of the dqdq-axis inductances, while the influence from the nonideal voltage measurement, which will cause an ill-conditioned problem in the estimation, has been taken into account and solved by error analysis. This method is finally verified on two prototype PMSMs and shows good performance. © 1982-2012 IEEE

    Evolution and Modern Approaches for Thermal Analysis of Electrical Machines

    Get PDF
    In this paper, the authors present an extended survey on the evolution and the modern approaches in the thermal analysis of electrical machines. The improvements and the new techniques proposed in the last decade are analyzed in depth and compared in order to highlight the qualities and defects of each. In particular, thermal analysis based on lumped-parameter thermal network, finite-element analysis, and computational fluid dynamics are considered in this paper. In addition, an overview of the problems linked to the thermal parameter determination and computation is proposed and discussed. Taking into account the aims of this paper, a detailed list of books and papers is reported in the references to help researchers interested in these topics

    Estimation of rotor flux of an induction machine

    Get PDF
    The objective of this dissertation is to estimate rotor flux of an IM. Some of the material is focused on the functional block of the IM i.e. Torque estimator, Speed estimator etc. while a subsequent part deals with estimation of rotor flux. The dissertation is organized as follows:Chapter 1 describes background information of the machines then it focuses on the methodology how on to approach the task on a particular time with the help of Gantt chart.Chapter 2 presents the basic principals of rotating magnetic field of the IM and asserts brief overview of the AC machines. Later it talks about different kinds of IM rotors suggesting which one is good. It is crucial to start with good and appropriate reviews which were verified by numerous journals. Literature review is presented by analysing the previous work. (Busawan et al., 2001) summarises that a nonlinear observers for the estimation of the rotor flux and the load torque in an induction motor. The observers are designed on the basis of the standard alpha - beta Park's model. Finally, fuzzy logic is mentioned in more detailed way and Membership functions were also discussedChapter 3 explains the dynamic model of induction machine plant and the model was presented. Then the model is analysed, developed in MATLAB-SIMULINK which was discussed in Chapter 4. By considering following assumptions, dynamic model is implemented i.e. it should be symmetrical two-pole, three phase windings. Slotting effects are neglected, Permeability of the iron part is infinite, and iron losses are neglected. Dynamic d-q model and Axes transformation is implemented on stationary reference frame (a-b-c). Lastly torque equation is derived.Chapter 4 is the heart of this project by scrutinizing the model thoroughly and by introducing fuzzy controller logic using MATLAB-SIMULINK; simulations are performed to estimate the functional block such as torque, speed, flux, resistance with and without fuzzy logic. Results were obtained for different blocks and the m-file, DTC, Flux table were obtained and presented in the Appendixes.Chapter 5 concludes the simulation results and concentrates mainly on the future direction what more can be done to improve the platform in a more efficient manner

    Machine model based Speed Estimation Schemes for Speed Encoderless Induction Motor Drives: A Survey

    Get PDF
    Speed Estimation without speed sensors is a complex phenomenon and is overly dependent on the machine parameters. It is all the more significant during low speed or near zero speed operation. There are several approaches to speed estimation of an induction motor. Eventually, they can be classified into two types, namely, estimation based on the machine model and estimation based on magnetic saliency and air gap space harmonics. This paper, through a brief literature survey, attempts to give an overview of the fundamentals and the current trends in various machine model based speed estimation techniques which have occupied and continue to occupy a great amount of research space
    corecore