1,708 research outputs found

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    Peer-to-Peer Trading for Enhancing Electric Vehicle Charging with Renewable Energy

    Get PDF
    Electric vehicles (EVs) are rapidly increasing in popularity as greater attention is paid to climate change and decarbonisation, however the environmental benefits that EVs offer can only be fully realised through the use of renewable energy for their charging. Smart charging solutions are essential for managing the impact of EVs and increasing the utilisation of renewable energy, however, questions remain over whether low-voltage distribution networks can accommodate the upcoming increases in EV charging demand. This thesis addresses both the challenge of increasing the utilisation of renewable energy for EV charging and also the importance of ensuring safe operation of low-voltage distribution networks with the integration of EV charging, distributed renewable energy generation, battery storage and vehicle-to-grid technologies. Chapter 3 examines a scenario where houses equipped with solar photovoltaic panels and EV charge points endeavour to sell surplus solar energy and the use of their EV charge point to visiting EVs that require charging. A peer-to-peer auction is proposed, with a novel matching mechanism presented to increase the amount of EV charging completed using solar energy without any knowledge about future EV arrivals. Chapter 4 presents a full peer-to-peer trading model of Network Impact Tokens and Phase Impact Tokens between houses in a low-voltage network. The Impact Tokens guarantee that all EV charging and renewable energy generation does not cause the network to exceed its voltage, current or transformer loading limits, while ensuring each house retains control over its energy usage, requiring no real-time monitoring or sensors in the network, and no privacy issues are encountered. The Network and Phase Impact Token approach is further verified in Chapter 5, as it forms the basis of a novel approach for Distribution System Operators to evaluate the maximum EV hosting capacity of their networks in conjunction with renewable energy generation and battery storage. The maximum EV capacity results are verified by an alternate Optimisation approach and the maximum EV penetration is evaluated for a number of scenarios

    Prospects for Electric Mobility: Systemic, Economic and Environmental Issues

    Get PDF
    The transport sector, which is currently almost completely based on fossil fuels, is one of the major contributors to greenhouse gas emissions. Heading towards a more sustainable development of mobility could be possible with more energy efficient automotive technologies such as battery electric vehicles. The number of electric vehicles has been increasing over the last decade, but there are still many challenges that have to be solved in the future. This Special Issue “Prospects for Electric Mobility: Systemic, Economic and Environmental Issues” contributes to the better understanding of the current situation as well as the future prospects and impediments for electro mobility. The published papers range from historical development of electricity use in different transport modes and the recent challenges up to future perspectives

    Economic and Policy Challenges of the Energy Transition in CEE Countries

    Get PDF
    With the announcement of the European Green Deal, which defines a set of policy initiatives aimed at achieving a 50–55% reduction in carbon emissions by 2030 and making Europe climate neutral in 2050, the challenge of energy transition becomes even more critical. The transformation of national energy systems towards sustainability is progressing throughout all Central and Eastern European (CEE) countries, yet the goals and results are different. Most EU Member States have made substantial progress towards meeting their long-term commitments of emissions reductions. However, some bloc members have struggled to meet their obligations. An effective energy transition requires the introduction of appropriately designed policy instruments and of robust economic analyses that ensure the best possible outcomes at the lowest costs for society. In this context, this Special Issue aims to bring into the discussion the challenges that CEE countries have to face and overcome while undergoing energy transition

    Profitability analysis on demand-side flexibility: A review

    Get PDF
    Flexibility has emerged as an optimal solution to the increasing uncertainty in power systems produced by the continuous development and penetration of distributed generation based on renewable energy. Many studies have shown the benefits for system operators and stakeholders of diverse ancillary services derived from demand-side flexibility. Cost-benefit analysis on these flexibility services should be carried out to determine the profitable applications, as well as the required adjustments on energy market, price schemes and normative framework to maximize the positive impacts of the available flexibility. This paper endeavors to review the main topics, variables and indexes related to the profitability analysis on demand-side flexibility, as well as the influence of energy markets, pricing and standards on revenue maximization. The conclusions drawn from this review demonstrate that the profitability of flexibility services considerably de-pends on energy market structure, involved assets, electricity prices and current ancillary services remuneration.Peer ReviewedPostprint (published version

    On the effects of eletric vehicles on the power system

    Get PDF
    In Kombination mit erneuerbaren Energien (EEG) werden Elektrofahrzeuge (EVs) als wichtiger Bestandteil einer Transformation hin zu nachhaltigen Energiesystemen angesehen. Obwohl EVs heute nur einen geringen Anteil an der Fahrzeugdurchdringung in Deutschland darstellen, ist es das Ziel der Bundesregierung, dass im Jahr 2030 sechs Millionen EVs auf deutschen Straßen fahren sollen. Die Realisierung dessen hätte aufgrund des daraus resultierenden zusätzlichen Strombedarfs erhebliche Auswirkungen auf das Stromsystem. Wie hoch diese sind, hängt maßgeblich von der Ladestrategie der Fahrzeuge ab und ist der Forschungsgegenstand dieser Arbeit. Die übergeordnete ökonomische Fragestellung lautet: Welche Auswirkungen haben unterschiedliche EV-Ladestrategien auf Strommengen und -preise in einem Stromsystem mit einem hohen Anteil an erneuerbaren Energien? Zur Beantwortung dessen wird zunächst der zeitabhängige Strombedarf von EVs bewertet. Im Anschluss, werden die EV-Ladestrategien unkontrolliertes Laden (UNC), kostengesteuertes Laden (DSM) und bidirektionales Laden (V2G) in einem europäischen Strommarktmodell umgesetzt und die Auswirkungen quantifiziert. Dadurch wurden folgende Erkenntnisse erlangt: EVs tragen zu einer besseren Integration der EEG bei, da alle drei Ladestrategien deren Abregelung reduzieren. Der zusätzliche Spitzenlastbedarf aufgrund von UNC wird je Millionen EVs im schlimmsten Fall auf 560 MW geschätzt. Entsprechend des Fahrverhaltens variiert die Stromnachfrage stark zwischen Werktagen und Wochenendtagen. An Werktagen sind die Spitzenwerte fast dreimal so hoch wie an Wochenendtagen. Wird durch UNC die Stromnachfrage erhöht, bedarf es des vermehrten Einsatzes von Spitzenlastkraftwerken, was zu steigenden Preisspitzen führt. Im Gegensatz dazu verschieben die beiden flexiblen Ladestrategien DSM und V2G die EV-Stromnachfrage in Zeiten mit geringer residualer Netzlast bzw. bei V2G deutlich zugunsten von Kraftwerken mit den niedrigsten Grenzkosten. Dies führt bei DSM zu einer Anhebung der Preise in Schwachlastzeiten. Bei V2G wird die Preisstruktur erheblich geglättet, indem Spitzenlastpreise reduziert und Schwachlastpreise deutlich erhöht werden. An Wochenenden ist dieser Effekt bei V2G noch stärker als an Werktagen, da ein großer Teil der EVs als stationärer Speicher genutzt werden kann. Neben ökonomischer Effizienz hat dies teilweise unerwünschte ökologische Nebenwirkungen. So werden im Fall von V2G bei niedrigen CO2-Preisen emissionsintensive Technologien wie Braunkohlekraftwerke begünstigt. Nichtsdestotrotz führen systemische Effekte, nämlich die Reduzierung von EEG-Abschaltungen, die Substitution von Spitzenlastkraftwerken und ein erhöhter Stromaustausch mit den Nachbarländern zu einer Gesamtreduktion der CO2-Emissionen. Bei hohen CO2-Preisen sind die Effekte durch V2G hinsichtlich der CO2-Emissionen und der ökonomischen Effizienz durchweg positiv. Begrenzt werden diese Vorteile von V2G durch wirtschaftliche Sättigungseffekte, welche bereits ab zwei Millionen Fahrzeugen deutlich werden.In combination with renewable energy sources (RES), electric vehicles (EVs) are seen as an important element of a transformation towards sustainable energy systems. Although EVs currently represent only a small fraction of vehicle penetration in Germany, it is the goal of the German government to have six million EVs on German roads by 2030. The achievement of this would have a significant impact on the electricity system due to the resulting additional energy demand. How large these impacts are is the subject of this work. The overarching economic research question is: What effects do different EV charging strategies have on quantities and prices in a power system with a high share of RES? To answer this question, the time-dependent electricity demand of EVs is initially evaluated. Subsequently, the EV charging strategies uncontrolled charging (UNC), demand side management (DSM), in the sense of cost effective charging and bidirectional charging, i.e. vehicle-to-grid (V2G) are implemented in a European electricity market model and the impacts quantified. To summarize the findings: EVs contribute to the integration of RES, since all three charging strategies reduce curtailment. In the worst case scenario, the additional peak load demand due to UNC is estimated at 560 MW per million EVs. The demand for electricity varies greatly between working days and weekend days, depending on the driving patterns. On working days, the peak demand is almost three times as high as on weekend days. Overall, UNC leads to the increased use of peak load power plants, which leads to rising price peaks. In contrast, the two flexible charging strategies DSM and V2G shift the EVs' electricity demand in times of low residual grid load or, in the case of V2G, significantly in favour of the power plants with the lowest marginal costs. With DSM, this results in an increase in prices during off-peak periods. With V2G, the price structure is considerably smoothed by reducing peak load prices and significantly increasing off-peak prices. On weekend days this effect is even stronger with V2G than on working days, since a large part of the EVs can be used as stationary storage. In addition to economic effciency, this has partly undesirable ecological side effects. In the case of V2G, emission-intensive technologies such as lignite-fired power plants are promoted at low CO2 prices. Nevertheless, systemic effects, namely the reduction of RES curtailment, the substitution of peak load power plants, and an increased electricity exchange with neighboring countries, lead to an overall reduction of the CO2 emissions. These benefits of V2G are limited due to economic saturation effects, which are already noticeable starting at two million vehicles
    • …
    corecore