5,922 research outputs found

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Data-driven model-based approaches to condition monitoring and improving power output of wind turbines

    Get PDF
    The development of the wind farm has grown dramatically in worldwide over the past 20 years. In order to satisfy the reliability requirement of the power grid, the wind farm should generate sufficient active power to make the frequency stable. Consequently, many methods have been proposed to achieve optimizing wind farm active power dispatch strategy. In previous research, it assumed that each wind turbine has the same health condition in the wind farm, hence the power dispatch for healthy and sub-healthy wind turbines are treated equally. It will accelerate the sub-healthy wind turbines damage, which may leads to decrease generating efficiency and increases operating cost of the wind farm. Thus, a novel wind farm active power dispatch strategy considering the health condition of wind turbines and wind turbine health condition estimation method are the proposed. A modelbased CM approach for wind turbines based on the extreme learning machine (ELM) algorithm and analytic hierarchy process (AHP) are used to estimate health condition of the wind turbine. Essentially, the aim of the proposed method is to make the healthy wind turbines generate power as much as possible and reduce fatigue loads on the sub-healthy wind turbines. Compared with previous methods, the proposed methods is able to dramatically reduce the fatigue loads on subhealthy wind turbines under the condition of satisfying network operator active power demand and maximize the operation efficiency of those healthy turbines. Subsequently, shunt active power filters (SAPFs) are used to improve power quality of the grid by mitigating harmonics injected from nonlinear loads, which is further to increase the reliability of the wind turbine system

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria

    Power Converter of Electric Machines, Renewable Energy Systems, and Transportation

    Get PDF
    Power converters and electric machines represent essential components in all fields of electrical engineering. In fact, we are heading towards a future where energy will be more and more electrical: electrical vehicles, electrical motors, renewables, storage systems are now widespread. The ongoing energy transition poses new challenges for interfacing and integrating different power systems. The constraints of space, weight, reliability, performance, and autonomy for the electric system have increased the attention of scientific research in order to find more and more appropriate technological solutions. In this context, power converters and electric machines assume a key role in enabling higher performance of electrical power conversion. Consequently, the design and control of power converters and electric machines shall be developed accordingly to the requirements of the specific application, thus leading to more specialized solutions, with the aim of enhancing the reliability, fault tolerance, and flexibility of the next generation power systems

    Design, development and characterisation of a FPGA platform for multi-motor electric vehicle control

    Get PDF
    Two three-phase squirrel-cage induction motors are used as a propulsion system of an electric vehicle (EV). A simple XC3S1000 FPGA is used to simultaneously control both electric motors, with field oriented control and space vector modulation techniques. To electronically distribute the torque between the two electric motors, a simple, yet effective, strategy based on a uniform torque distribution has been implemented. Experimental results obtained with a multi-motor EV prototype demonstrate the proper operation of the proposed system

    Applications of Power Electronics:Volume 1

    Get PDF

    An intelligent real-time cyber-physical toolset for energy and process prediction and optimisation in the future industrial Internet of Things

    Get PDF
    Energy waste significantly contributes to increased costs in the automotive manufacturing industry, which is subject to energy usage restrictions and taxation from national and international policy makers and restrictions and charges from national energy providers. For example, the UK Climate Change Levy, charged to businesses at 0.554p/kWh equates to 7.28% of a manufacturing business’s energy bill based on an average total usage rate of 7.61p/kWh. Internet of Things (IoT) energy monitoring systems are being developed, however, there has been limited consideration of services for efficient energy-use and minimisation of production costs in industry. This paper presents the design, development and validation of a novel, adaptive Cyber-Physical Toolset to optimise cumulative plant energy consumption through characterisation and prediction of the active and reactive power of three-phase industrial machine processes. Extensive validation has been conducted in automotive manufacture production lines with industrial three-phase Hurco VM1 computer numerical control (CNC) machines

    Analisa Teknis Dan Bisnis Penggunaan Koneksi Daya Pantai Di Pelabuhan Hamburg

    Get PDF
    Di pelabuhan, saat kapal tersebut berlabuh loading, unloading, dan aktivitas perhotelan adalah menggunakan mesin kapal. Pembakaran bahan bakar laut adalah penyumbang utama polusi udara, polusi udara dilepaskan 400 km di sekitar area pelabuhan. Dampak pencemaran adalah gangguan pernapasan, kesehatan, dan lingkungan sekitar pelabuhan. Studi menunjukkan 60.000 dari kematian cardiopulmonary disebabkan oleh emisi kapal udara. Emisi kapal mewakili 3% dari CO2 global, 15% dari NOx global, dan 6% dari emisi global SOx. Karena itu Pelabuhan Hamburg membuat fasilitas daya pantai pada bulan Juli 2015 dengan ide smart port dan menggunakan energi terbarukan seperti turbin angin dan menggunakan regulasi Internasional IEC-ISO-IEEE 8005-1. Dalam tesis ini, biaya dan juga kondisi antara daya pantai dan mesin kapal akan dianalisa dan dibandingkan untuk menemukan yang paling ekonomis antara fasilitas daya pantai dan mesin kapal. Shore fasilitas listrik di Hamburg disediakan oleh SIEMENS dengan SIHARBOR dan menggunakan lengan robot oleh Stemman Technik sebagai sistem manajemen kabel. Tujuan dari tesis ini ialah mengembangkan alat perhitungan untuk melihat perbandingan biaya dan juga emisi. xii Dan dari alat perhitungan shore connection dapat mengurangi emisi sebesar 100% karena menggunakan energi terbarukan dan menjadi ekonomis daripada menggunakan mesin kapal, karena menghemat biaya hingga 1.000 €. Manfaat lainnya adalah pemilik kapal dapat menghemat pemeliharaan mesin bantu mereka. Ini menunjukkan bahwa daya pantai adalah teknologi yang terbukti untuk mengurangi emisi dan biaya sandar kapal ====================================================================================================== In port, when the ship is berthing the loading, unloading, and hospitality activity is using auxiliary engine. The combustion of marine fuels is a major contributor to air pollution, the air pollution is released 400 km around the port area. The impacts of the pollution are respiratory, health, and the environment around ports. Study indicates 60.000 of cardiopulmonary mortalities caused by ship air emission. Ship emission represents 3% of global CO2, 15% of global NOx, and 6% of global SOx emission. Because of that Hamburg Port is released the shore power facilities in July 2015 with idea of smart port and use the renewable energy such as wind turbine and solar panel compliance with IEC-ISO-IEEE 8005-1. In this bachelor thesis, the cost and also the condition between shore power and auxiliary engine will be analyzed and compared to find the most economical between shore power facilities and ship’s auxiliary engine. Shore power facilities in Hamburg are provided by SIEMENS with SIHARBOR and use a robot arm by Stemman Technik as the cable management system. The goal of this thesis is developed calculation tool to see the cost comparison and also the emission. And from the calculation tool the shore power is reducing the emission by 100% because of using the renewable energy and become economical than using auxiliary engine, it can save up to €1000. The other benefits are ship owner can save maintenance of their auxiliary engine and also saved the file. It shows that the shore power is a proven technology to reduce the emission and saved berth cos
    • …
    corecore