20,095 research outputs found

    Tree Parity Machine Rekeying Architectures

    Get PDF
    The necessity to secure the communication between hardware components in embedded systems becomes increasingly important with regard to the secrecy of data and particularly its commercial use. We suggest a low-cost (i.e. small logic-area) solution for flexible security levels and short key lifetimes. The basis is an approach for symmetric key exchange using the synchronisation of Tree Parity Machines. Fast successive key generation enables a key exchange within a few milliseconds, given realistic communication channels with a limited bandwidth. For demonstration we evaluate characteristics of a standard-cell ASIC design realisation as IP-core in 0.18-micrometer CMOS-technology

    Mixing multi-core CPUs and GPUs for scientific simulation software

    Get PDF
    Recent technological and economic developments have led to widespread availability of multi-core CPUs and specialist accelerator processors such as graphical processing units (GPUs). The accelerated computational performance possible from these devices can be very high for some applications paradigms. Software languages and systems such as NVIDIA's CUDA and Khronos consortium's open compute language (OpenCL) support a number of individual parallel application programming paradigms. To scale up the performance of some complex systems simulations, a hybrid of multi-core CPUs for coarse-grained parallelism and very many core GPUs for data parallelism is necessary. We describe our use of hybrid applica- tions using threading approaches and multi-core CPUs to control independent GPU devices. We present speed-up data and discuss multi-threading software issues for the applications level programmer and o er some suggested areas for language development and integration between coarse-grained and ne-grained multi-thread systems. We discuss results from three common simulation algorithmic areas including: partial di erential equations; graph cluster metric calculations and random number generation. We report on programming experiences and selected performance for these algorithms on: single and multiple GPUs; multi-core CPUs; a CellBE; and using OpenCL. We discuss programmer usability issues and the outlook and trends in multi-core programming for scienti c applications developers

    Pseudo-Random Number Generators for Vector Processors and Multicore Processors

    Get PDF
    Large scale Monte Carlo applications need a good pseudo-random number generator capable of utilizing both the vector processing capabilities and multiprocessing capabilities of modern computers in order to get the maximum performance. The requirements for such a generator are discussed. New ways of avoiding overlapping subsequences by combining two generators are proposed. Some fundamental philosophical problems in proving independence of random streams are discussed. Remedies for hitherto ignored quantization errors are offered. An open source C++ implementation is provided for a generator that meets these needs
    • …
    corecore