1,820 research outputs found

    Exploration and Design of High Performance Variation Tolerant On-Chip Interconnects

    Get PDF
    Siirretty Doriast

    Leakage Current Analysis for Diagnosis of Bridge Defects in Power-Gating Designs

    Get PDF
    Manufacturing defects that do not affect the functional operation of low power Integrated Circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS’05 benchmarks synthesised using a 32 nm CMOS technology, the trade-offs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R ≳ 10MΩ(weak bridges) and bridges of R â‰Č 10MΩ (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27K and 157K gate equivalents, respectively

    Low power CMOS IC, biosensor and wireless power transfer techniques for wireless sensor network application

    Get PDF
    The emerging field of wireless sensor network (WSN) is receiving great attention due to the interest in healthcare. Traditional battery-powered devices suffer from large size, weight and secondary replacement surgery after the battery life-time which is often not desired, especially for an implantable application. Thus an energy harvesting method needs to be investigated. In addition to energy harvesting, the sensor network needs to be low power to extend the wireless power transfer distance and meet the regulation on RF power exposed to human tissue (specific absorption ratio). Also, miniature sensor integration is another challenge since most of the commercial sensors have rigid form or have a bulky size. The objective of this thesis is to provide solutions to the aforementioned challenges

    Digital-Based Analog Processing in Nanoscale CMOS ICs for IoT Applications

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Development of a Waveform Sampling ASIC with Femtosecond Timing for a Low Occupancy Vertex Detector.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 ÎŒW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 ÎŒm2 of silicon area, consumes 0.72 ÎŒW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed

    Digital-based analog processing in nanoscale CMOS ICs for IoT applications

    Get PDF
    The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen tary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consump tion, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this state ment through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 ”m2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 ”m2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 ”VRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

    Floating-Gate Design and Linearization for Reconfigurable Analog Signal Processing

    Get PDF
    Analog and mixed-signal integrated circuits have found a place in modern electronics design as a viable alternative to digital pre-processing. With metrics that boast high accuracy and low power consumption, analog pre-processing has opened the door to low-power state-monitoring systems when it is utilized in place of a power-hungry digital signal-processing stage. However, the complicated design process required by analog and mixed-signal systems has been a barrier to broader applications. The implementation of floating-gate transistors has begun to pave the way for a more reasonable approach to analog design. Floating-gate technology has widespread use in the digital domain. Analog and mixed-signal use of floating-gate transistors has only become a rising field of study in recent years. Analog floating gates allow for low-power implementation of mixed-signal systems, such as the field-programmable analog array, while simultaneously opening the door to complex signal-processing techniques. The field-programmable analog array, which leverages floating-gate technologies, is demonstrated as a reliable replacement to signal-processing tasks previously only solved by custom design. Living in an analog world demands the constant use and refinement of analog signal processing for the purpose of interfacing with digital systems. This work offers a comprehensive look at utilizing floating-gate transistors as the core element for analog signal-processing tasks. This work demonstrates the floating gate\u27s merit in large reconfigurable array-driven systems and in smaller-scale implementations, such as linearization techniques for oscillators and analog-to-digital converters. A study on analog floating-gate reliability is complemented with a temperature compensation scheme for implementing these systems in ever-changing, realistic environments
    • 

    corecore