7,265 research outputs found

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics

    Off-line signature verification

    Get PDF
    In todayā€™s society signatures are the most accepted form of identity verification. However, they have the unfortunate side-effect of being easily abused by those who would feign the identification or intent of an individual. This thesis implements and tests current approaches to off-line signature verification with the goal of determining the most beneficial techniques that are available. This investigation will also introduce novel techniques that are shown to significantly boost the achieved classification accuracy for both person-dependent (one-class training) and person-independent (two-class training) signature verification learning strategies. The findings presented in this thesis show that many common techniques do not always give any significant advantage and in some cases they actually detract from the classification accuracy. Using the techniques that are proven to be most beneficial, an effective approach to signature verification is constructed, which achieves approximately 90% and 91% on the standard CEDAR and GPDS signature datasets respectively. These results are significantly better than the majority of results that have been previously published. Additionally, this approach is shown to remain relatively stable when a minimal number of training signatures are used, representing feasibility for real-world situations
    • ā€¦
    corecore