150,646 research outputs found

    An Objectives-Driven Process for Selecting Methods to Support Requirements Engineering Activities

    Full text link
    This paper presents a framework that guides the requirements engineer in the implementation and execution of an effective requirements generation process. We achieve this goal by providing a well-defined requirements engineering model and a criteria based process for optimizing method selection for attendant activities. Our model, unlike other models, addresses the complete requirements generation process and consists of activities defined at more adequate levels of abstraction. Additionally, activity objectives are identified and explicitly stated - not implied as in the current models. Activity objectives are crucial as they drive the selection of methods for each activity. Our model also incorporates a unique approach to verification and validation that enhances quality and reduces the cost of generating requirements. To assist in the selection of methods, we have mapped commonly used methods to activities based on their objectives. In addition, we have identified method selection criteria and prescribed a reduced set of methods that optimize these criteria for each activity defined by our requirements generation process. Thus, the defined approach assists in the task of selecting methods by using selection criteria to reduce a large collection of potential methods to a smaller, manageable set. The model and the set of methods, taken together, provide the much needed guidance for the effective implementation and execution of the requirements generation process.Comment: 20 pages, 5 figures, 3 tables, publisheed: 29th Annual IEEE/NASA Software Engineering Workshop, April 200

    A review of information flow diagrammatic models for product-service systems

    Get PDF
    A product-service system (PSS) is a combination of products and services to create value for both customers and manufacturers. Modelling a PSS based on function orientation offers a useful way to distinguish system inputs and outputs with regards to how data are consumed and information is used, i.e. information flow. This article presents a review of diagrammatic information flow tools, which are designed to describe a system through its functions. The origin, concept and applications of these tools are investigated, followed by an analysis of information flow modelling with regards to key PSS properties. A case study of selection laser melting technology implemented as PSS will then be used to show the application of information flow modelling for PSS design. A discussion based on the usefulness of the tools in modelling the key elements of PSS and possible future research directions are also presented

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    The Link between BPR, Evolutionary Delivery and Evolutionary Development

    Get PDF
    In this paper we intend to show how the challenges of managing a Business Process Reengineering (BPR) project are consistent with the ones of a Systems Development project. As traditional management techniques were no longer appropriate in the changing business environment, companies employed BPR to achieve elevated business performance. Similarly, as traditional systems development approaches delivered disappointing results, system developers experimented with other models, including Evolutionary Delivery and Evolutionary Development, in order to enable successful technology exploitation by businesses. Both these business and systems initiatives embrace elements of cultural change, management flexibility, empowerment, organisational readiness, and technology introduction in a changing environment. We will present the similarities of the two initiatives and show how progress in one initiative could contribute in the progress of the other
    corecore