7,808 research outputs found

    Learning Interpretable Models of Aircraft Handling Behaviour by Reinforcement Learning from Human Feedback

    Get PDF
    We propose a method to capture the handling abilities of fast jet pilots in a software model via reinforcement learning (RL) from human preference feedback. We use pairwise preferences over simulated flight trajectories to learn an interpretable rule-based model called a reward tree, which enables the automated scoring of trajectories alongside an explanatory rationale. We train an RL agent to execute high-quality handling behaviour by using the reward tree as the objective, and thereby generate data for iterative preference collection and further refinement of both tree and agent. Experiments with synthetic preferences show reward trees to be competitive with uninterpretable neural network reward models on quantitative and qualitative evaluations

    Principles of ontophylogenetic development of artificial general intelligence systems based on multi-agent neurocognitive architectures

    Get PDF
    The purpose of the study is to study the possibilities of multigenerational optimization of behavior control systems for agents of general artificial intelligence capable of independently solving a universal range of tasks in a real environment. The main principles of ontophylogenetic synthesis of control systems for agents of general artificial intelligence based on multi-agent neurocognitive architectures have been developed. Methods and algorithms for synthesizing the phenotypes of control systems of intelligent agents according to their genotypes are proposed. A software package for simulating the processes of ontophylogenetic synthesis of multi-agent neurocognitive architectures has been developed and experiments have been carried out to create phenotypes of intelligent agents based on them. A complex genome of an intelligent agent has been developed, the features of a multichromosome genetic algorithm for organizing calculations in the paradigm of multigenerational optimization of multiagent neurocognitive architectures have been established and substantiated. It is shown that multigenerational optimization of the multi-agent neurocognitive architecture of intelligent agents can contribute to the achievement of adaptive resistance to the operating conditions of a general artificial intelligence agent, provide the synthesis of its suboptimal structural and functional scheme, accelerate learning and algorithms for finding solutions to a universal range of problems solved by this agent in its ecological niche

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Climate Change and Critical Agrarian Studies

    Full text link
    Climate change is perhaps the greatest threat to humanity today and plays out as a cruel engine of myriad forms of injustice, violence and destruction. The effects of climate change from human-made emissions of greenhouse gases are devastating and accelerating; yet are uncertain and uneven both in terms of geography and socio-economic impacts. Emerging from the dynamics of capitalism since the industrial revolution — as well as industrialisation under state-led socialism — the consequences of climate change are especially profound for the countryside and its inhabitants. The book interrogates the narratives and strategies that frame climate change and examines the institutionalised responses in agrarian settings, highlighting what exclusions and inclusions result. It explores how different people — in relation to class and other co-constituted axes of social difference such as gender, race, ethnicity, age and occupation — are affected by climate change, as well as the climate adaptation and mitigation responses being implemented in rural areas. The book in turn explores how climate change – and the responses to it - affect processes of social differentiation, trajectories of accumulation and in turn agrarian politics. Finally, the book examines what strategies are required to confront climate change, and the underlying political-economic dynamics that cause it, reflecting on what this means for agrarian struggles across the world. The 26 chapters in this volume explore how the relationship between capitalism and climate change plays out in the rural world and, in particular, the way agrarian struggles connect with the huge challenge of climate change. Through a huge variety of case studies alongside more conceptual chapters, the book makes the often-missing connection between climate change and critical agrarian studies. The book argues that making the connection between climate and agrarian justice is crucial

    A Survey on Socially Aware Robot Navigation: Taxonomy and Future Challenges

    Get PDF
    Socially aware robot navigation is gaining popularity with the increase in delivery and assistive robots. The research is further fueled by a need for socially aware navigation skills in autonomous vehicles to move safely and appropriately in spaces shared with humans. Although most of these are ground robots, drones are also entering the field. In this paper, we present a literature survey of the works on socially aware robot navigation in the past 10 years. We propose four different faceted taxonomies to navigate the literature and examine the field from four different perspectives. Through the taxonomic review, we discuss the current research directions and the extending scope of applications in various domains. Further, we put forward a list of current research opportunities and present a discussion on possible future challenges that are likely to emerge in the field

    Temporally extended goal recognition in fully observable non-deterministic domain models

    Get PDF
    This work has been partially supported by the ERC-ADGWhiteMech (No. 834228), the EU ICT-48 2020 project TAILOR (No. 952215), the PRIN project RIPER (No. 20203FFYLK),and the PNRR MUR project FAIR (No. PE0000013).Peer reviewedPublisher PD

    Fairness-aware Machine Learning in Educational Data Mining

    Get PDF
    Fairness is an essential requirement of every educational system, which is reflected in a variety of educational activities. With the extensive use of Artificial Intelligence (AI) and Machine Learning (ML) techniques in education, researchers and educators can analyze educational (big) data and propose new (technical) methods in order to support teachers, students, or administrators of (online) learning systems in the organization of teaching and learning. Educational data mining (EDM) is the result of the application and development of data mining (DM), and ML techniques to deal with educational problems, such as student performance prediction and student grouping. However, ML-based decisions in education can be based on protected attributes, such as race or gender, leading to discrimination of individual students or subgroups of students. Therefore, ensuring fairness in ML models also contributes to equity in educational systems. On the other hand, bias can also appear in the data obtained from learning environments. Hence, bias-aware exploratory educational data analysis is important to support unbiased decision-making in EDM. In this thesis, we address the aforementioned issues and propose methods that mitigate discriminatory outcomes of ML algorithms in EDM tasks. Specifically, we make the following contributions: We perform bias-aware exploratory analysis of educational datasets using Bayesian networks to identify the relationships among attributes in order to understand bias in the datasets. We focus the exploratory data analysis on features having a direct or indirect relationship with the protected attributes w.r.t. prediction outcomes. We perform a comprehensive evaluation of the sufficiency of various group fairness measures in predictive models for student performance prediction problems. A variety of experiments on various educational datasets with different fairness measures are performed to provide users with a broad view of unfairness from diverse aspects. We deal with the student grouping problem in collaborative learning. We introduce the fair-capacitated clustering problem that takes into account cluster fairness and cluster cardinalities. We propose two approaches, namely hierarchical clustering and partitioning-based clustering, to obtain fair-capacitated clustering. We introduce the multi-fair capacitated (MFC) students-topics grouping problem that satisfies students' preferences while ensuring balanced group cardinalities and maximizing the diversity of members regarding the protected attribute. We propose three approaches: a greedy heuristic approach, a knapsack-based approach using vanilla maximal 0-1 knapsack formulation, and an MFC knapsack approach based on group fairness knapsack formulation. In short, the findings described in this thesis demonstrate the importance of fairness-aware ML in educational settings. We show that bias-aware data analysis, fairness measures, and fairness-aware ML models are essential aspects to ensure fairness in EDM and the educational environment.Ministry of Science and Culture of Lower Saxony/LernMINT/51410078/E

    Spatial adaptive settlement systems in archaeology. Modelling long-term settlement formation from spatial micro interactions

    Get PDF
    Despite research history spanning more than a century, settlement patterns still hold a promise to contribute to the theories of large-scale processes in human history. Mostly they have been presented as passive imprints of past human activities and spatial interactions they shape have not been studied as the driving force of historical processes. While archaeological knowledge has been used to construct geographical theories of evolution of settlement there still exist gaps in this knowledge. Currently no theoretical framework has been adopted to explore them as spatial systems emerging from micro-choices of small population units. The goal of this thesis is to propose a conceptual model of adaptive settlement systems based on complex adaptive systems framework. The model frames settlement system formation processes as an adaptive system containing spatial features, information flows, decision making population units (agents) and forming cross scale feedback loops between location choices of individuals and space modified by their aggregated choices. The goal of the model is to find new ways of interpretation of archaeological locational data as well as closer theoretical integration of micro-level choices and meso-level settlement structures. The thesis is divided into five chapters, the first chapter is dedicated to conceptualisation of the general model based on existing literature and shows that settlement systems are inherently complex adaptive systems and therefore require tools of complexity science for causal explanations. The following chapters explore both empirical and theoretical simulated settlement patterns based dedicated to studying selected information flows and feedbacks in the context of the whole system. Second and third chapters explore the case study of the Stone Age settlement in Estonia comparing residential location choice principles of different periods. In chapter 2 the relation between environmental conditions and residential choice is explored statistically. The results confirm that the relation is significant but varies between different archaeological phenomena. In the third chapter hunter-fisher-gatherer and early agrarian Corded Ware settlement systems were compared spatially using inductive models. The results indicated a large difference in their perception of landscape regarding suitability for habitation. It led to conclusions that early agrarian land use significantly extended land use potential and provided a competitive spatial benefit. In addition to spatial differences, model performance was compared and the difference was discussed in the context of proposed adaptive settlement system model. Last two chapters present theoretical agent-based simulation experiments intended to study effects discussed in relation to environmental model performance and environmental determinism in general. In the fourth chapter the central place foragingmodel was embedded in the proposed model and resource depletion, as an environmental modification mechanism, was explored. The study excluded the possibility that mobility itself would lead to modelling effects discussed in the previous chapter. The purpose of the last chapter is the disentanglement of the complex relations between social versus human-environment interactions. The study exposed non-linear spatial effects expected population density can have on the system and the general robustness of environmental inductive models in archaeology to randomness and social effect. The model indicates that social interactions between individuals lead to formation of a group agency which is determined by the environment even if individual cognitions consider the environment insignificant. It also indicates that spatial configuration of the environment has a certain influence towards population clustering therefore providing a potential pathway to population aggregation. Those empirical and theoretical results showed the new insights provided by the complex adaptive systems framework. Some of the results, including the explanation of empirical results, required the conceptual model to provide a framework of interpretation

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore