8,898 research outputs found

    Successful object encoding induces increased directed connectivity in presymptomatic early-onset Alzheimer's disease

    Get PDF
    Background: Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer’s disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. Objective: To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. Methods: EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. Results: Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. Conclusion: Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD.Postprint (author's final draft

    High-resolution optical and SAR image fusion for building database updating

    Get PDF
    This paper addresses the issue of cartographic database (DB) creation or updating using high-resolution synthetic aperture radar and optical images. In cartographic applications, objects of interest are mainly buildings and roads. This paper proposes a processing chain to create or update building DBs. The approach is composed of two steps. First, if a DB is available, the presence of each DB object is checked in the images. Then, we verify if objects coming from an image segmentation should be included in the DB. To do those two steps, relevant features are extracted from images in the neighborhood of the considered object. The object removal/inclusion in the DB is based on a score obtained by the fusion of features in the framework of Dempster–Shafer evidence theory

    Derived induction and restriction theory

    Full text link
    Let GG be a finite group. To any family F\mathscr{F} of subgroups of GG, we associate a thick \otimes-ideal FNil\mathscr{F}^{\mathrm{Nil}} of the category of GG-spectra with the property that every GG-spectrum in FNil\mathscr{F}^{\mathrm{Nil}} (which we call F\mathscr{F}-nilpotent) can be reconstructed from its underlying HH-spectra as HH varies over F\mathscr{F}. A similar result holds for calculating GG-equivariant homotopy classes of maps into such spectra via an appropriate homotopy limit spectral sequence. In general, the condition EFNilE\in \mathscr{F}^{\mathrm{Nil}} implies strong collapse results for this spectral sequence as well as its dual homotopy colimit spectral sequence. As applications, we obtain Artin and Brauer type induction theorems for GG-equivariant EE-homology and cohomology, and generalizations of Quillen's Fp\mathcal{F}_p-isomorphism theorem when EE is a homotopy commutative GG-ring spectrum. We show that the subcategory FNil\mathscr{F}^{\mathrm{Nil}} contains many GG-spectra of interest for relatively small families F\mathscr{F}. These include GG-equivariant real and complex KK-theory as well as the Borel-equivariant cohomology theories associated to complex oriented ring spectra, any LnL_n-local spectrum, the classical bordism theories, connective real KK-theory, and any of the standard variants of topological modular forms. In each of these cases we identify the minimal family such that these results hold.Comment: 63 pages. Many edits and some simplifications. Final version, to appear in Geometry and Topolog
    corecore