12,053 research outputs found

    1st INCF Workshop on Sustainability of Neuroscience Databases

    Get PDF
    The goal of the workshop was to discuss issues related to the sustainability of neuroscience databases, identify problems and propose solutions, and formulate recommendations to the INCF. The report summarizes the discussions of invited participants from the neuroinformatics community as well as from other disciplines where sustainability issues have already been approached. The recommendations for the INCF involve rating, ranking, and supporting database sustainability

    The Mental Database

    Get PDF
    This article uses database, evolution and physics considerations to suggest how the mind stores and processes its data. Its innovations in its approach lie in:- A) The comparison between the capabilities of the mind to those of a modern relational database while conserving phenomenality. The strong functional similarity of the two systems leads to the conclusion that the mind may be profitably described as being a mental database. The need for material/mental bridging and addressing indexes is discussed. B) The consideration of what neural correlates of consciousness (NCC) between sensorimotor data and instrumented observation one can hope to obtain using current biophysics. It is deduced that what is seen using the various brain scanning methods reflects only that part of current activity transactions (e.g. visualizing) which update and interrogate the mind, but not the contents of the integrated mental database which constitutes the mind itself. This approach yields reasons why there is much neural activity in an area to which a conscious function is ascribed (e.g. the amygdala is associated with fear), yet there is no visible part of its activity which can be clearly identified as phenomenal. The concept is then situated in a Penrosian expanded physical environment, requiring evolutionary continuity, modularity and phenomenality.Several novel Darwinian advantages arising from the approach are described

    Transcranial Electrical Stimulation for Associative Memory Enhancement: State-of-the-Art from Basic to Clinical Research

    Get PDF
    Associative memory (AM) is the ability to bind new information into complex memory representations. Noninvasive brain stimulation (NIBS), especially transcranial electric stimulation (tES), has gained increased interest in research of associative memory (AM) and its impairments. To provide an overview of the current state of knowledge, we conducted a systematic review following PRISMA guidelines covering basic and clinical research. Out of 374 identified records, 41 studies were analyzed—twenty-nine in healthy young adults, six in the aging population, three comparing older and younger adults, as well as two studies on people with MCI, and one in people with Alzheimer’s dementia. Studies using transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS) as well as oscillatory (otDCS) and high-definition protocols (HD-tDCS, HD-tACS) have been included. The results showed methodological heterogeneity in terms of study design, stimulation type, and parameters, as well as outcome measures. Overall, the results show that tES is a promising method for AM enhancement, especially if the stimulation is applied over the parietal cortex and the effects are assessed in cued recall paradigms

    Distributed XQuery-based integration and visualization of multimodality data: Application to brain mapping.

    Get PDF
    This paper addresses the need for relatively small groups of collaborating investigators to integrate distributed and heterogeneous data about the brain. Although various national efforts facilitate large-scale data sharing, these approaches are generally too “heavyweight” for individual or small groups of investigators, with the result that most data sharing among collaborators continues to be ad hoc. Our approach to this problem is to create a “lightweight” distributed query architecture, in which data sources are accessible via web services that accept arbitrary query languages but return XML results. A Distributed XQuery Processor (DXQP) accepts distributed XQueries in which subqueries are shipped to the remote data sources to be executed, with the resulting XML integrated by DXQP. A web-based application called DXBrain accesses DXQP, allowing a user to create, save and execute distributed XQueries, and to view the results in various formats including a 3-D brain visualization. Example results are presented using distributed brain mapping data sources obtained in studies of language organization in the brain, but any other XML source could be included. The advantage of this approach is that it is very easy to add and query a new source, the tradeoff being that the user needs to understand XQuery and the schemata of the underlying sources. For small numbers of known sources this burden is not onerous for a knowledgeable user, leading to the conclusion that the system helps to fill the gap between ad hoc local methods and large scale but complex national data sharing efforts
    • …
    corecore