3,755 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Towards engineering ontologies for cognitive profiling of agents on the semantic web

    Get PDF
    Research shows that most agent-based collaborations suffer from lack of flexibility. This is due to the fact that most agent-based applications assume pre-defined knowledge of agents’ capabilities and/or neglect basic cognitive and interactional requirements in multi-agent collaboration. The highlight of this paper is that it brings cognitive models (inspired from cognitive sciences and HCI) proposing architectural and knowledge-based requirements for agents to structure ontological models for cognitive profiling in order to increase cognitive awareness between themselves, which in turn promotes flexibility, reusability and predictability of agent behavior; thus contributing towards minimizing cognitive overload incurred on humans. The semantic web is used as an action mediating space, where shared knowledge base in the form of ontological models provides affordances for improving cognitive awareness

    Enabling Machine Understandable Exchange of Energy Consumption Information in Intelligent Domotic Environments

    Get PDF
    In the 21st century, all the major countries around the world are coming together to reduce the impact of energy generation and consumption on the global environment. Energy conservation and its efficient usage has become a top agenda on the desks of many governments. In the last decade, the drive to make homes automated and to deliver a better assisted living picked pace and the research into home automation systems accelerated, usually based on a centralized residential gateway. However most devised solutions fail to provide users with information about power consumption of different house appliances. The ability to collect power consumption information can lead us to have a more energy efficient society. The goal addressed in this paper is to enable residential gateways to provide the energy consumption information, in a machine understandable format, to support third party applications and services. To reach this goal, we propose a Semantic Energy Information Publishing Framework. The proposed framework publishes, for different appliances in the house, their power consumption information and other properties, in a machine understandable format. Appliance properties are exposed according to the existing semantic modeling supported by residential gateways, while instantaneous power consumption is modeled through a new modular Energy Profile ontolog

    Ontology-based data semantic management and application in IoT- and cloud-enabled smart homes

    Get PDF
    The application of emerging technologies of Internet of Things (IoT) and cloud computing have increasing the popularity of smart homes, along with which, large volumes of heterogeneous data have been generating by home entities. The representation, management and application of the continuously increasing amounts of heterogeneous data in the smart home data space have been critical challenges to the further development of smart home industry. To this end, a scheme for ontology-based data semantic management and application is proposed in this paper. Based on a smart home system model abstracted from the perspective of implementing users’ household operations, a general domain ontology model is designed by defining the correlative concepts, and a logical data semantic fusion model is designed accordingly. Subsequently, to achieve high-efficiency ontology data query and update in the implementation of the data semantic fusion model, a relational-database-based ontology data decomposition storage method is developed by thoroughly investigating existing storage modes, and the performance is demonstrated using a group of elaborated ontology data query and update operations. Comprehensively utilizing the stated achievements, ontology-based semantic reasoning with a specially designed semantic matching rule is studied as well in this work in an attempt to provide accurate and personalized home services, and the efficiency is demonstrated through experiments conducted on the developed testing system for user behavior reasoning

    Semantic Transformation of Web Services

    Get PDF
    Web services have become the predominant paradigm for the development of distributed software systems. Web services provide the means to modularize software in a way that functionality can be described, discovered and deployed in a platform independent manner over a network (e.g., intranets, extranets and the Internet). The representation of web services by current industrial practice is predominantly syntactic in nature lacking the fundamental semantic underpinnings required to fulfill the goals of the emerging Semantic Web. This paper proposes a framework aimed at (1) modeling the semantics of syntactically defined web services through a process of interpretation, (2) scop-ing the derived concepts within domain ontologies, and (3) harmonizing the semantic web services with the domain ontologies. The framework was vali-dated through its application to web services developed for a large financial system. The worked example presented in this paper is extracted from the se-mantic modeling of these financial web services

    A framework for deriving semantic web services

    Get PDF
    Web service-based development represents an emerging approach for the development of distributed information systems. Web services have been mainly applied by software practitioners as a means to modularize system functionality that can be offered across a network (e.g., intranet and/or the Internet). Although web services have been predominantly developed as a technical solution for integrating software systems, there is a more business-oriented aspect that developers and enterprises need to deal with in order to benefit from the full potential of web services in an electronic market. This ‘ignored’ aspect is the representation of the semantics underlying the services themselves as well as the ‘things’ that the services manage. Currently languages like the Web Services Description Language (WSDL) provide the syntactic means to describe web services, but lack in providing a semantic underpinning. In order to harvest all the benefits of web services technology, a framework has been developed for deriving business semantics from syntactic descriptions of web services. The benefits of such a framework are two-fold. Firstly, the framework provides a way to gradually construct domain ontologies from previously defined technical services. Secondly, the framework enables the migration of syntactically defined web services toward semantic web services. The study follows a design research approach which (1) identifies the problem area and its relevance from an industrial case study and previous research, (2) develops the framework as a design artifact and (3) evaluates the application of the framework through a relevant scenario

    NETQOS policy management architecture for flexible QOS provisioning in Future Internet

    Get PDF
    This paper is focussed on the NETQOS architecture for automated QoS policy provisioning, which can be used in Future Internet scenarios by the different actors (i.e. network operators, service providers, and users) for flexible QoS configuration over combinations of mobile, fixed, sensor and broadcast networks. The NETQOS policy management architecture opens the possibility to specify QoS policies on a "business" level using ontology descriptions and policy management interfaces, which are specific to the actors. The business level policy specifications are translated by the NETQOS system into intermediate and operational QoS policies for automated QoS configuration at the managed heterogeneous network and transport entities. NETQOS allows QoS policy specification and dependency analysis considering Service Level Agreements (SLAs) between the actors, as well as automated policy provisioning and adaptation. The interaction of the NETQOS components is based on a common po licy repository. The particular focus of the paper is aimed to discuss ontology and actor oriented QoS policy specification and configuration for heterogeneous networks, as well as NETQOS QoS policy management interfaces at business level and automated translation of business QoS policies to intermediate and operational policy level
    corecore