481 research outputs found

    Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling

    Get PDF
    In the last decade, the Industrial Revolution 4.0 brought flexible supply chains and flexible design projects to the forefront. Nevertheless, the recent pandemic, the accompanying economic problems, and the resulting supply problems have further increased the role of logistics and supply chains. Therefore, planning and scheduling procedures that can respond flexibly to changed circumstances have become more valuable both in logistics and projects. There are already several competing criteria of project and logistic process planning and scheduling that need to be reconciled. At the same time, the COVID-19 pandemic has shown that even more emphasis needs to be placed on taking potential risks into account. Flexibility and resilience are emphasized in all decision-making processes, including the scheduling of logistic processes, activities, and projects

    A geo-informatics approach to sustainability assessments of floatovoltaic technology in South African agricultural applications

    Get PDF
    South African project engineers recently pioneered the first agricultural floating solar photovoltaic tech nology systems in the Western Cape wine region. This effort prepared our country for an imminent large scale diffusion of this exciting new climate solver technology. However, hydro-embedded photovoltaic sys tems interact with environmentally sensitive underlying aquatic ecosystems, causing multiple project as sessment uncertainties (energy, land, air, water) compared to ground-mounted photovoltaics. The dissimi lar behaviour of floatovoltaic technologies delivers a broader and more diversified range of technical advan tages, environmental offset benefits, and economic co-benefits, causing analytical modelling imperfections and tooling mismatches in conventional analytical project assessment techniques. As a universal interna tional real-world problem of significance, the literature review identified critical knowledge and methodology gaps as the primary causes of modelling deficiencies and assessment uncertainties. By following a design thinking methodology, the thesis views the sustainability assessment and modelling problem through a geo graphical information systems lens, thus seeing an academic research opportunity to fill critical knowledge gaps through new theory formulation and geographical knowledge creation. To this end, this philosophi cal investigation proposes a novel object-oriented systems-thinking and climate modelling methodology to study the real-world geospatial behaviour of functioning floatovoltaic systems from a dynamical system thinking perspective. As an empirical feedback-driven object-process methodology, it inspired the thesis to create new knowledge by postulating a new multi-disciplinary sustainability theory to holistically characterise agricultural floatovoltaic projects through ecosystems-based quantitative sustainability profiling criteria. The study breaks new ground at the frontiers of energy geo-informatics by conceptualising a holistic theoretical framework designed for the theoretical characterisation of floatovoltaic technology ecosystem operations in terms of the technical energy, environmental and economic (3E) domain responses. It campaigns for a fully coupled model in ensemble analysis that advances the state-of-the-art by appropriating the 3E theo retical framework as underpinning computer program logic blueprint to synthesise the posited theory in a digital twin simulation. Driven by real-world geo-sensor data, this geospatial digital twin can mimic the geo dynamical behaviour of floatovoltaics through discrete-time computer simulations in real-time and lifetime digital project enactment exercises. The results show that the theoretical 3E framing enables project due diligence and environmental impact assessment reporting as it uniquely incorporates balanced scorecard performance metrics, such as the water-energy-land-food resource impacts, environmental offset benefits and financial feasibility of floatovoltaics. Embedded in a geoinformatics decision-support platform, the 3E theory, framework and model enable numerical project decision-supporting through an analytical hierarchy process. The experimental results obtained with the digital twin model and decision support system show that the desktop-based parametric floatovoltaic synthesis toolset can uniquely characterise the broad and diverse spectrum of performance benefits of floatovoltaics in a 3E sustainability profile. The model uniquely predicts important impact aspects of the technology’s land, air and water preservation qualities, quantifying these impacts in terms of the water, energy, land and food nexus parameters. The proposed GIS model can quantitatively predict most FPV technology unknowns, thus solving a contemporary real-world prob lem that currently jeopardises floating PV project licensing and approvals. Overall, the posited theoretical framework, methodology model, and reported results provide an improved understanding of floating PV renewable energy systems and their real-world behaviour. Amidst a rapidly growing international interest in floatovoltaic solutions, the research advances fresh philosophical ideas with novel theoretical principles that may have far-reaching implications for developing electronic, photovoltaic performance models worldwide.GeographyPh. D. (Geography

    Towards a circular economy: fabrication and characterization of biodegradable plates from sugarcane waste

    Get PDF
    Bagasse pulp is a promising material to produce biodegradable plates. Bagasse is the fibrous residue that remains after sugarcane stalks are crushed to extract their juice. It is a renewable resource and is widely available in many countries, making it an attractive alternative to traditional plastic plates. Recent research has shown that biodegradable plates made from Bagasse pulp have several advantages over traditional plastic plates. For example, they are more environmentally friendly because they are made from renewable resources and can be composted after use. Additionally, they are safer for human health because they do not contain harmful chemicals that can leach into food. The production process for Bagasse pulp plates is also relatively simple and cost-effective. Bagasse is first collected and then processed to remove impurities and extract the pulp. The pulp is then molded into the desired shape and dried to form a sturdy plate. Overall, biodegradable plates made from Bagasse pulp are a promising alternative to traditional plastic plates. They are environmentally friendly, safe for human health, and cost-effective to produce. As such, they have the potential to play an important role in reducing plastic waste and promoting sustainable practices. Over the years, the world was not paying strict attention to the impact of rapid growth in plastic use. As a result, uncontrollable volumes of plastic garbage have been released into the environment. Half of all plastic garbage generated worldwide is made up of packaging materials. The purpose of this article is to offer an alternative by creating bioplastic goods that can be produced in various shapes and sizes across various sectors, including food packaging, single-use tableware, and crafts. Products made from bagasse help address the issue of plastic pollution. To find the optimum option for creating bagasse-based biodegradable dinnerware in Egypt and throughout the world, researchers tested various scenarios. The findings show that bagasse pulp may replace plastics in biodegradable packaging. As a result of this value-added utilization of natural fibers, less waste and less of it ends up in landfills. The practical significance of this study is to help advance low-carbon economic solutions and to produce secure bioplastic materials that can replace Styrofoam in tableware and food packaging production

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Optimizing Plant Water Use Efficiency for a Sustainable Environment

    Get PDF
    The rising shortage of water resources in crop-producing regions worldwide and the need for irrigation optimisation call for sustainable water savings. The allocation of irrigation water will be an ever-increasing source of pressure because of vast agricultural demands under changing climatic conditions. Consequently, irrigation has to be closely linked with water-use efficiency with the aim of boosting productivity and improving food quality, singularly in those regions where problems of water shortages or collection and delivery are widespread. The present Special Issue (SI) showcases 19 original contributions, addressing water-use efficiency in the context of sustainable irrigation management to meet water scarcity conditions. These papers cover a wide range of subjects including (i) interaction mineral nutrition and irrigation in horticultural crops, (ii) sustainable irrigation in woody fruit crops, (iii) medicinal plants, (iv) industrial crops, and (v) other topics devoted to remote sensing techniques and crop water requirements, genotypes for drought tolerance, and agricultural management. The studies were carried out in both field and laboratory surveys, with modelling studies also being conducted, and a wide range of geographic regions are also covered. The collection of these manuscripts presented in this SI updates on and provides a relevant contribution for efficient saving water resources

    Digitization of the work environment for sustainable production

    Get PDF
    Global pandemics, devastating wars and natural disasters with increasing frequency and impact are disrupting previously carefully balanced manufacturing networks. All industrial companies are required to examine their operations and adjust accordingly. The increasing cost of resources require enterprises to re-design their value creation processes to be more sustainable, to optimize the supplier network to become more resilient and to accelerate digitizing of operations to enhance operational effectiveness. This year's WGAB research seminar is themed around Digitization of the work environment for sustainable production and seeks to contribute solutions to the current challenges. The scientific discourse aims to advance the sustainable and data-based organization of value creation processes. Exemplary efforts for the sustainable production of 3D printed footwear and the circular supply chain of energy production will be discussed. With advances in sensory data collection in cyber-physical production systems (CPPS), there are new opportunities for sensing the status of manufacturing systems, which enable advanced data analytics to contribute to a sustainable production. Intelligent processes enable sustainable value creation and bi-directional knowledge exchange between humans and machines. With people at the centre of the CPPS, production systems shall be both adaptive and personalized for every worker. People need to be involved in the technological and organizational changes. Simulating the migration from a linear economy to a circular economy supports the trend of regionalized production networks. Digital assistance systems are tested to back up resilient manufacturing. We would like to thank all authors for their efforts in preparing the contributions, which are valuable inputs to the discourse to solve the current challenges

    Exploring Critical Success Factors for Implementing IT Modernization Systems in Michigan State Agencies

    Get PDF
    Since 2001, most government organizations’ IT modernization programs had failed because of ineffective implementation strategies from IT leaders. The research problem was the absence of effective strategies to modernize IT legacy systems. The purpose of this qualitative single case study was to explore effective IT modernization strategies to revolutionize IT legacy systems. The researcher sought to answer how organizations create effective strategies to modernize IT legacy systems. The study used purposeful sampling, including 13 IT leaders, IT technicians, and customers based on their experience in implementing successful IT modernization programs’ strategies. Data were collected using semi-structured interviews and agency documentation. Data were analyzed using the four-step thematic analysis approach, including data transcription, data organization, data coding, and data validation. The interpretation of data revealed four major themes: IT leader strategy, IT leader knowledge, IT infrastructure security and reliability, and IT cost savings. The findings revealed that IT leaders serve as the key actors in the IT modernization programs’ network. Their knowledge is essential to a holistic IT transformation strategy to enhance risk-based decisions and communicate with customers. The implication for positive social change includes the potential to use innovative technologies to reduce cost, increase data security, and simplify IT applications to enhance Michiganders’ quality of life in multiple aspects

    Advancing Smart Manufacturing in Europe: Experiences from Two Decades of Research and Innovation Projects

    Get PDF
    In the past two decades, a large amount of attention has been devoted to the introduction of smart manufacturing concepts and technologies into industrial practice. In Europe, these efforts have been supported by European research and innovation programs, bringing together research and application parties. In this paper, we provide an overview of a series of four content-wise connected projects on the European scale that are aimed at advancing smart manufacturing, with a focus on connecting processes on smart factory shop floors to manufacturing equipment on the one hand and enterprise-level business processes on the other hand. These projects cover several tens of application cases across Europe. We present our experiences in the form of a single, informal longitudinal case study, highlighting both the major advances and the current limitations of developments. To organize these experiences, we place them in the context of the well-known RAMI4.0 reference framework for Industry 4.0 (covering the ISA-95 standard). Then, we analyze the experiences, both the positive ones and those including problems, and draw our learnings from these. In doing so, we do not present novel technological developments in this paper—these are presented in the papers we refer to—but concentrate on the main issues we have observed to guide future developments in research efforts and industrial innovation in the smart industry domain

    Greater Hartford Reentry Welcome Center: Year Three Evaluation September 17, 2020-September 17, 2021

    Get PDF
    This is the third in a series of evaluation reports for a three-year formative evaluation of the Greater Hartford Reentry Welcome Center (GH-RWC) comprising both process and outcome findings. The purpose of this formative evaluation is to identify what is and what is not working well and to provide strategic recommendations for areas needing improvement and to leverage emergent promising practices. This Year Three report provides the data and findings from CPA's RWC database, observations, surveys, and interviews for the period starting September 17, 2020 through September 17, 2021. The report also includes supplemental findings for the first two quarters of 2022, as the GH-RWC administration began to expand staffing and programming, and to prepare for moving to a new location that could accommodate the growth of the Center. The challenges that were experienced in Years Two and Three are being actively addressed by CPA, so many of the recommendations listed in the Year Three evaluation are already underway in Year Four
    • …
    corecore