58 research outputs found

    Study of compliant mechanisms and flexible hinges in topology optimization

    Get PDF
    This thesis presents a comprehensive study on the application of compliant mechanisms and flexible hinges in topology optimization. Compliant mechanisms are a promising approach for achieving desired functionalities and structural flexibility in engineering designs. By exploiting the inherent elasticity of materials, compliant mechanisms offer advantages such as reduced complexity, improved reliability, and enhanced performance. Topology optimization, conversely, allows obtaining compliant mechanisms with reduced weight through the creation of holes, thus achieving an optimized design. In this work, we explore the integration of compliant mechanisms and flexible hinges within the framework of topology optimization, aiming to propose a method of improvement for the design efficiency and performance of structures in the aerospace field. The thesis begins with a thorough literature review of compliant mechanisms and their role in current aerospace applications. Various design principles and analysis techniques are examined to establish a solid foundation for the subsequent chapters. The study then focuses on the implementation of mathematical models and computational algorithms to incorporate compliant mechanisms and flexible hinges into the topology optimization process. To validate the proposed approach, a series of numerical experiments are conducted. Various case studies are considered, including a gripping and inverter mechanisms. The results demonstrate the effectiveness of compliant mechanisms and flexible hinges in enhancing the performance of optimized structures. The compliant mechanisms exhibit improved flexibility, adaptability, and energy absorption capabilities enabling smooth and controlled motion. Overall, this thesis significantly contributes to the understanding and implementation of compliant mechanisms and their integration with topology optimization techniques. The study not only showcases their potential for creating innovative and efficient designs across various engineering disciplines but also emphasizes their particular relevance in the aerospace field. By exploring the application of compliant mechanisms and topology optimization in aerospace engineering, it has been seen that this cutting-edge technology is opened up for new avenues for further research and development

    2023-2024 Lynn University Academic Catalog

    Get PDF
    The 2023-2024 Academic Catalog initially published as a web-only document. The Department of Marketing and Communication created a PDF version, which is available for download here.https://spiral.lynn.edu/accatalogs/1052/thumbnail.jp

    2022-2023 Lynn University Academic Catalog

    Get PDF
    The 2022-2023 Academic Catalog initially published as a web-only document. The Department of Marketing and Communication created a PDF version, which is available for download here.https://spiral.lynn.edu/accatalogs/1051/thumbnail.jp

    SEISMIC FRAGILITY CURVES ACCOUNTING FOR SITE AND SOIL STRUCTURE INTERACTION EFFECTS ON URM BUILDINGS

    Get PDF
    Significant site-amplification effects have been observed in various historic centers following the recent seismic events in Italy (e.g., L'Aquila 2009, Emilia 2012, Central Italy 2016-17), but also examples of Soil Foundation Structure (SFS) interaction in ordinary unreinforced masonry (URM) buildings. In the past, SFS interaction effects were usually considered for masonry buildings only in slender or massive URM monumental structures. Following the latest observed evidence, this research aims to further investigate the role of site amplification and SFS interaction in the seismic response of URM residential structures. The final goal is to provide an effective procedure to consider these effects in large-scale risk assessment as well. The first part of the research validated the numerical approach to analyze the SFS interaction by reproducing the seismic response of the Visso school affected by the earthquake sequence in central Italy. This school constituted a very emblematic case study, since it was permanently monitored by the Italian Department of Civil Protection and suffered very severe damage, allowing validation even in a highly nonlinear phase. The procedure is based on the decoupled approach. Therefore, the input motion of the foundation is calculated from the site response analyses and the structural performance is analyzed through a structural model with springs at the base and characterized by equivalent damping. This school's validated procedure and numerical model were exploited to derive fragility curves that include site effects and SFS interaction under different subsurface conditions. The predicted damage probability was also compared with the results obtained from different amplifications of the simplified Code-compliant approach. Finally, the research was further generalized by considering multiple building types and different soil profiles. The structural types were inspired by the most frequent building types in the municipality of Visso, consisting of aggregate masonry structures. The set of derived fragility curves was finally applied to an urban scale to develop damage scenarios. In particular, the resulting damage under ground motion of the Central Italy earthquake was compared with that observed and predicted by existing faster and less accurate approaches, to assess the potential of the developed tools also to support possible future large-scale mitigation policies

    Numerical modelling of additive manufacturing process for stainless steel tension testing samples

    Get PDF
    Nowadays additive manufacturing (AM) technologies including 3D printing grow rapidly and they are expected to replace conventional subtractive manufacturing technologies to some extents. During a selective laser melting (SLM) process as one of popular AM technologies for metals, large amount of heats is required to melt metal powders, and this leads to distortions and/or shrinkages of additively manufactured parts. It is useful to predict the 3D printed parts to control unwanted distortions and shrinkages before their 3D printing. This study develops a two-phase numerical modelling and simulation process of AM process for 17-4PH stainless steel and it considers the importance of post-processing and the need for calibration to achieve a high-quality printing at the end. By using this proposed AM modelling and simulation process, optimal process parameters, material properties, and topology can be obtained to ensure a part 3D printed successfully

    Optimal shape design with automatically differentiated CAD parametrisations

    Get PDF
    PhD ThesisTypical engineering workflow for aerodynamic design could be considered as a three-stage process: modelling of a new component in a CAD system, its detailed aerodynamic analysis on the computational grid using flow simulations (CFD) and manufacturing of the CAD component. Numerical shape optimisation is becoming an essential industrial method to improve the aerodynamic performance of shapes immersed in fluids. High-fidelity optimisation requires fine design spaces with many design variables, which can only be tackled with gradient-based optimisation methods. Adjoint CFD can efficiently calculate the necessary flow sensitivities on computational grids and ideally, also CAD parametrisation should be kept inside the loop to maintain a consistent CAD model during the optimisation and streamline the design process. However, (i) typical commercial CAD systems do not offer derivative computation and (ii) standard CAD parametrisations may not define a suitable design space for the optimisation. This thesis presents an automatically differentiated (AD) version of the open-source CAD kernel OpenCascade Technology (OCCT), which robustly provides shape derivatives with respect to CAD parameters. Developed block-vector AD mode outperforms commonly used finite difference approaches in both efficiency and accuracy. Coupling of OCCT with an adjoint CFD solver provides for the first time a fully differentiated design chain. Extension of OCCT to perform shape optimisation is demonstrated by using CAD parametrisations based on (a) user-defined parametric CAD models and (b) BRep (NURBS) models. The imposition of geometric constraints, a salient part of the industrial design, is shown for both approaches. Novel parametrisation techniques that can handle components with surface-surface intersections or simultaneously incorporate approaches (a) and (b) for the optimisation of a single component are demonstrated. The CAD-based methodology is successfully applied for aerodynamic shape optimisation of three industrial test cases. Additionally, advantages of the differentiated CAD is showcased for the commonly occurring CAD re-parametrisation and mesh-to-CAD fitting problems

    Innovative mathematical and numerical models for studying the deformation of shells during industrial forming processes with the Finite Element Method

    Get PDF
    The doctoral thesis "Innovative mathematical and numerical models for studying the deformation of shells during industrial forming processes with the Finite Element Method" aims to contribute to the development of finite element methods for the analysis of stamping processes, a problematic area with a clear industrial application. To achieve the proposed objectives, the first part of this thesis covers the solid-shell elements. This type of element is attractive for the simulation of forming processes, since any type of three-dimensional constitutive law can be formulated without the need to consider any additional conjecture. Additionally, the contact of both sides can be easily treated. This work first presents the development of a triangular prismatic solid-sheet element, for the analysis of thick and thin sheets with capacity for large deformations. This element is in total Lagrangian formulation, and uses neighboring elements to compute a field of quadratic displacements. In the original formulation, a modified right Cauchy tensor was obtained; however, in this work, the formulation is extended obtaining a modified strain gradient, which allows the concepts of push-forward and pull-back to be used. These concepts provide a mathematically consistent method for the definition of temporary derivatives of tensors and, therefore, can be used, for example, to work with elasto-plasticity. This work continues with the development of the contact formulation used, a methodology found in the bibliography on computational contact mechanics for implicit simulations. This formulation consists of an exact integration of the contact interface using mortar methods, which allows obtaining the most consistent integration possible between the integration domains, as well as the most exact possible solution. The most notable contribution of this work is the consideration of dual augmented Lagrange multipliers as an optimization method. To solve the system of equations, a semi-smooth Newton method is considered, which consists of an active set strategy, also extensible in the case of friction problems. The formulation is functional for both frictionless and friction problems, which is essential for simulating stamping processes. This frictional formulation is framed in traditional friction models, such as Coulomb friction, but the development presented can be extended to any type of friction model. The remaining necessary component for the simulation of industrial processes are the constitutive models. In this work, this is materialized in the formulation of plasticity considered. These constitutive models will be considered plasticity models for large deformations, with an arbitrary combination of creep surfaces and plastic potentials: the so-called non-associative models. To calculate the tangent tensor corresponding to these general laws, numerical implementations based on perturbation methods have been considered. Another fundamental contribution of this work is the development of techniques for adaptive remeshing, of which different approaches will be presented. On the one hand, metric-based techniques, including the level-set and Hessian approaches. These techniques are general-purpose and can be considered in both structural problems and fluid mechanics problems. On the other hand, the SPR error estimation method, more conventional than the previous ones, is presented. In this area, the contribution of this work consists in the estimation of error using the Hessian and SPR techniques for the application to numerical contact problems.La tesis doctoral "Modelos matemáticos y numéricos innovadores para el estudio de la deformación de láminas durante los procesos de conformado industrial por el Método de los Elementos Finitos" pretende contribuir al desarrollo de métodos de elementos finitos para el análisis de procesos de estampado, un área problemática con una clara aplicación industrial. De hecho, este tipo de problemas multidisciplinares requieren el conocimiento de múltiples disciplinas, como la mecánica de medios continuos, la plasticidad, la termodinámica y los problemas de contacto, entre otros. Para alcanzar los objetivos propuestos, la primera parte de esta tesis abarca los elementos de sólido lámina. Este tipo de elemento resulta atractivo para la simulación de procesos de conformado, dado que cualquier tipo de ley constitutiva tridimensional puede ser formulada sin necesidad de considerar ninguna conjetura adicional. Además, este tipo de elementos permite realizar una descripción tridimensional del cuerpo deformable, por tanto, el contacto de ambas caras puede ser tratado fácilmente. Este trabajo presenta en primer lugar el desarrollo de un elemento de sólido-lámina prismático triangular, para el análisis de láminas gruesas y delgadas con capacidad para grandes deformaciones. Este elemento figura en formulación Lagrangiana total, y emplea los elementos vecinos para poder computar un campo de desplazamientos cuadráticos. En la formulación original, se obtenía un tensor de Cauchy derecho modificado (¯C); sin embargo, en este trabajo, la formulación se extiende obteniendo un gradiente de deformación modificado (¯F), que permite emplear los conceptos de push-forward y pull-back. Dichos conceptos proveen de un método matemáticamente consistente para la definición de derivadas temporales de tensores y, por tanto, puede ser usado, por ejemplo, para trabajar con elasto-plasticidad. El elemento se basa en tres modificaciones: (a) una aproximación clásica de deformaciones transversales de corte mixtas impuestas; (b) una aproximación de deformaciones impuestas para las Componentes en el plano tangente de la lámina; y (c) una aproximación de deformaciones impuestas mejoradas en la dirección normal a través del espesor, mediante la consideración de un grado de libertad adicional. Los objetivos son poder utilizar el elemento para la simulación de láminas sin bloquear por cortante, mejorar el comportamiento membranal del elemento en el plano tangente, eliminar el bloqueo por efecto Poisson y poder tratar materiales elasto-plásticos con un flujo plástico incompresible, así como materiales elásticos cuasi-incompresibles o materiales con flujo plástico isocórico. El elemento considera un único punto de Gauss en el plano, mientras que permite considerar un número cualquiera de puntos de integración en su eje, con el objetivo de poder considerar problemas con una significativa no linealidad en cuanto a plasticidad. Este trabajo continúa con el desarrollo de la formulación de contacto empleada, una metodología que se encuentra en la bibliografía sobre la mecánica de contacto computacional para simulaciones implícitas. Dicha formulación consiste en una integración exacta de la interfaz de contacto mediante métodos de mortero, lo que permite obtener la integración más consistente posible entre los dominios de integración, así como la solución más exacta posible. La implementación también considera varios algoritmos de optimización, como la optimización mediante penalización. La contribución más notable de este trabajo es la consideración de multiplicadores de Lagrange aumentados duales como método de optimización. Estos permiten condensar estáticamente el sistema de ecuaciones, lo que permite eliminar los multiplicadores de Lagrange de la resolución y, por lo tanto, permite la consideración de solvers iterativos. Además, la formulación ha sido adecuadamente linealizada, asegurando la convergencia cuadrática del problema. Para resolver el sistema de ecuaciones, se considera un método de Newton semi-smooth, que consiste en una estrategia de set activo, extensible también en el caso de problemas friccionales. La formulación es funcional tanto para problemas sin fricción como para problemas friccionales, lo que es esencial para la simulación de procesos de estampado. Esta formulación friccional se enmarca en los modelos de fricción tradicionales, como la fricción de Coulomb, pero el desarrollo presentado puede extenderse a cualquier tipo de modelo de fricción. Esta formulación de contacto es totalmente compatible con el elemento sólido-lámina introducido en este trabajo. El componente necesario restante para la simulación de procesos industriales son los modelos constitutivos. En este trabajo, esto se ve materializado en la formulación de plasticidad considerada. Estos modelos constitutivos se considerarán modelos de plasticidad para grandes deformaciones, con una combinación arbitraria de superficies de fluencia y potenciales plásticos: los llamados modelos no asociados. Para calcular el tensor tangente correspondiente a estas leyes generales, se han considerado implementaciones numéricas basadas en métodos de perturbación. Otra contribución fundamental de este trabajo es el desarrollo de técnicas para el remallado adaptativo, de las que se presentarán distintos enfoques. Por un lado, las técnicas basadas en métricas, incluyendo los enfoques level-set y Hessiano. Estas técnicas son de propósito general y pueden considerarse tanto en la aplicación de problemas estructurales como en problemas de mecánica de fluidos. Por otro lado, se presenta el método de estimación de errores SPR, más convencional que los anteriores. En este ámbito, la contribución de este trabajo consiste en la estimación de error mediante las técnicas de Hessiano y SPR para la aplicación a problemas de contacto numérico. Con los desarrollos previamente introducidos, estaremos en disposición de introducir los casos de aplicación centrados en el contexto de procesos de estampado. Es relevante destacar que estos ejemplos son comparados con las soluciones de referencia disponibles en la bibliografía como forma de validar los desarrollos presentados hasta este punto. El presente documento está organizado de la siguiente manera. El primer capítulo establece los objetivos y revisa la bibliografía acerca de los temas clave de este trabajo. El segundo capítulo hace una introducción de la mecánica de medios continuos y los conceptos relativos al Método de los Elementos Finitos (MEF), necesarios en los desarrollos que se presentarán en los capítulos siguientes. El tercer capítulo aborda la formulación del elemento sólido-lámina, así como del elemento de lámina sin grados de libertad de rotación que inspira el sólido-lámina desarrollado. Esta parte muestra varios ejemplos académicos que son comúnmente empleados en la bibliografía como problemas de referencia de láminas. El cuarto capítulo presenta la formulación desarrollada para la resolución de problemas de contacto numérico, consistente en una formulación implícita de integración exacta mediante métodos mortero y multiplicadores de Lagrange aumentados duales. Este capítulo incluye, asimismo, varios ejemplos comúnmente encontrados en la bibliografía, que generalmente son considerados para su validación. El quinto capítulo presenta la formulación de plasticidad empleada, incluyendo algunos detalles técnicos desde el punto de vista de la implementación, así como varios ejemplos de validación. El sexto capítulo muestra los algoritmos de remallado adaptativo desarrollados en el contexto de este trabajo, y presenta varios ejemplos, que incluyen no solo casos estructurales, sino también de mecánica de fluidos. El séptimo capítulo encapsula algunos casos de validación y aplicación para procesos de estampado. El capítulo final comprende las conclusiones, así como los trabajos que podrían continuar el presente estudio.Postprint (published version

    A Methodological Approach to Knowledge-Based Engineering Systems for Manufacturing

    Get PDF
    A survey of implementations of the knowledge-based engineering approach in different technological sectors is presented. The main objectives and techniques of examined applications are pointed out to illustrate the trends and peculiarities for a number of manufacturing field. Existing methods for the development of these engineering systems are then examined in order to identify critical aspects when applied to manufacturing. A new methodological approach is proposed to overcome some specific limitations that emerged from the above-mentioned survey. The aim is to provide an innovative method for the implementation of knowledge-based engineering applications in the field of industrial production. As a starting point, the field of application of the system is defined using a spatial representation. The conceptual design phase is carried out with the aid of a matrix structure containing the most relevant elements of the system and their relations. In particular, objectives, descriptors, inputs and actions are defined and qualified using categorical attributes. The proposed method is then applied to three case studies with different locations in the applicability space. All the relevant elements of the detailed implementation of these systems are described. The relations with assumptions made during the design are highlighted to validate the effectiveness of the proposed method. The adoption of case studies with notably different applications also reveals the versatility in the application of the method

    Algorithm-aided Information Design: Hybrid Design approach on the edge of associative methodologies in AEC

    Get PDF
    Dissertação de mestrado em European Master in Building Information ModellingLast three decades have brought colossal progress to design methodologies within the common pursuit toward a seamless fusion between digital and physical worlds and augmenting it with the of computation power and network coverage. For this historically short period, two generations of methodologies and tools have emerged: Additive generation and parametric Associative generation of CAD. Currently, designers worldwide engaged in new forms of design exploration. From this race, two prominent methodologies have developed from Associative Design approach – Object-Oriented Design (OOD) and Algorithm-Aided Design (AAD). The primary research objective is to investigate, examine, and push boundaries between OOD and AAD for new design space determination, where advantages of both design methods are fused to produce a new generation methodology which is called in the present study AID (Algorithm-aided Information Design). The study methodology is structured into two flows. In the first flow, existing CAD methodologies are investigated, and the conceptual framework is extracted based on the state of art analysis, then analysed data is synthesized into the subject proposal. In the second flow, tools and workflows are elaborated and examined on practice to confirm the subject proposal. In compliance, the content of the research consists of two theoretical and practical parts. In the first theoretical part, a literature review is conducted, and assumptions are made to speculate about AID methodology, its tools, possible advantages and drawbacks. Next, case studies are performed according to sequential stages of digital design through the lens of practical AID methodology implementation. Case studies are covering such design aspects as model & documentation generation, design automation, interoperability, manufacturing control, performance analysis and optimization. Ultimately, a set of test projects is developed with the AID methodology applied. After the practical part, research returns to the theory where analytical information is gathered based on the literature review, conceptual framework, and experimental practice reports. In summary, the study synthesizes AID methodology as part of Hybrid Design, which enables creative use of tools and elaborating of agile design systems integrating additive and associative methodologies of Digital Design. In general, the study is based on agile methods and cyclic research development mixed between practice and theory to achieve a comprehensive vision of the subject.Last three decades have brought colossal progress to design methodologies within the common pursuit toward a seamless fusion between digital and physical worlds and augmenting it with the of computation power and network coverage. For this historically short period, two generations of methodologies and tools have emerged: Additive generation and parametric Associative generation of CAD. Currently, designers worldwide engaged in new forms of design exploration. From this race, two prominent methodologies have developed from Associative Design approach – Object-Oriented Design (OOD) and Algorithm-Aided Design (AAD). The primary research objective is to investigate, examine, and push boundaries between OOD and AAD for new design space determination, where advantages of both design methods are fused to produce a new generation methodology which is called in the present study AID (Algorithm-aided Information Design). The study methodology is structured into two flows. In the first flow, existing CAD methodologies are investigated, and the conceptual framework is extracted based on the state of art analysis, then analysed data is synthesized into the subject proposal. In the second flow, tools and workflows are elaborated and examined on practice to confirm the subject proposal. In compliance, the content of the research consists of two theoretical and practical parts. In the first theoretical part, a literature review is conducted, and assumptions are made to speculate about AID methodology, its tools, possible advantages and drawbacks. Next, case studies are performed according to sequential stages of digital design through the lens of practical AID methodology implementation. Case studies are covering such design aspects as model & documentation generation, design automation, interoperability, manufacturing control, performance analysis and optimization. Ultimately, a set of test projects is developed with the AID methodology applied. After the practical part, research returns to the theory where analytical information is gathered based on the literature review, conceptual framework, and experimental practice reports. In summary, the study synthesizes AID methodology as part of Hybrid Design, which enables creative use of tools and elaborating of agile design systems integrating additive and associative methodologies of Digital Design. In general, the study is based on agile methods and cyclic research development mixed between practice and theory to achieve a comprehensive vision of the subject

    Multi-angle valve seat machining: experimental analysis and numerical modelling

    Get PDF
    Modern automotive manufacturers operate in highly competitive markets, heavily influenced by Government regulation and ever more environmentally conscious consumers. Modern high-temperature, high-pressure engines that use high hardness multi-angle valve seats are an attractive environmental option, but one that manufacturers find requires more advanced materials and tighter geometric tolerances to maintain engine performance.Tool manufacturers meet these increasingly tougher demands by using, higher hardness cutting materials such as polycrystalline cubic boron nitride (pcBN), that on paper, promise to wear at a lower rate, require less coolant and deliver tighter tolerances than their carbide counterparts.The low brittle fracture toughness of pcBN makes tools that use it vulnerable to minute chipping. A review of literature for this work pointed to no clear answer to this problem, although suggestions range from manufacturing defects, dynamic and flexibility problems with the production line machinery and fixtures, and radial imbalances in the cutting loads.This work set about experimentally investigating those potential explanations, coming to the conclusion that the high radial imbalance of the cutting loads is responsible for pcBN cutting insert failure during multi-angle valve seat machining, and that by simply relocating the cutting inserts around the multi angle cutting tool, the imbalance can be reduced, thus extending the life of the cutting inserts.It is not always easy to predict the imbalance due to the multiple flexibilities in the system, and simulating such a system in 3D with all its associated cutting phenomena such as friction, thermal expansion, chip flow and shearing, would call upon extraordinary computational power and extremely precise experimental inputs to reduce cumulative error.This thesis proves that such a 3D simulation can be made, that runs in exceptionally short durations compared to traditional methods, by making a number of simplifications.MSC Marc was used to host the simulation, with a parametric script written in Python responsible for generating the model geometry and cutter layout. A Fortran program was developed that is called upon by Marc to calculate the required cutting load outputs and generate new workpiece meshes as material is removed.</div
    corecore