40 research outputs found

    Quality of service in optical burst switching networks

    Get PDF
    Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009Fundação para e Ciência e a Tecnologi

    Simulation Model for OBS Contention Avoidance Routing Strategies

    Get PDF
    Abstract. Optical burst switching (OBS) provides a feasible paradigm for the next IP over optical network backbones. However, due to its bufferless nature, OBS efficiency can be reduced by resource contention leading to burst loss. Several methods have been proposed to address this problem, most of them relying on reactive mechanisms which increase the complexity of core nodes, hampering scalability. In this work we consider a preventive traffic engineering approach for contention resolution which provides source routing with the objective of minimizing contention at the transmission links considering only topological information. This paper presents a simulation model aimed at the evaluation of different offline routing strategies in terms of burst contention. The simulation model is used to compare the performance of different novel path selection strategies with the traditional shortest path routing approach. Results confirm that the proposed strategies are effective in reducing the overall blocking and the model is feasible for the proposed QoS evaluation

    Signaling strategies for consumer oriented Grid over Optical Burst Switching networks

    Get PDF
    Dissertação mest., Engenharia Eléctrica e Telecomunicações, Universidade do Algarve, 2009The concept of Grid networks has recently emerged as an infrastructure able to support, both scientific and commercial applications. The Grid is a dynamic, distributed collection of heterogeneous computational, storage and network resources geographically distributed and shared between organizations. Optical Burst Switching (OBS) networks have been identified as a technology with potential to support the requirements of the Grids. This approach, known as Grid over Optical Burst Switching (GOBS) is currently the object of intensive research. This dissertation focus is on GOBS architectures employing Active OBS Routers with centralized control. This approach enables the balance of the overall network traffic potentially minimizing congestion and consequently reducing job blocking. Two different strategies are explored. The first strategy is a novel signaling scheme applied to a GOBS network employing Active Routers. The Active Router reduces the job blocking probability, because the path used by the Data Burst to reach the Grid Job Resource is selected based on the network actual status. Since the Active Router maintains the network status always updated, the bursts are only dropped when is not possible to connect the source to the end node. Another study associated with this signaling scheme is the reservation time. It is demonstrated that this approach decreases the network blocking probability at the same time that decreases the time delay that a job suffers until it reaches the Grid service provider. In the second strategy, the Active Router only select the Grid Resource used to resolve the job, the path used to reach it is selected by the Grid client based on the probabilistic model for the link demands. The probabilistic model is used to predict a possible network usage based on the demands from all nodes to all nodes. The results obtained show overall performance improvement

    On the highly stable performance of loss-free optical burst switching networks

    Get PDF
    Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS); Optical Packet Switching (OPS); and Optical Burst Switching (OBS). Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost

    Đánh giá hiệu năng mạng chuyển mạch burst quang bằng mô hình giải tích toán học sử dụng nguyên lý hàng đợi M/M/w/w và mô phỏng trên OMNeT++

    Get PDF
    Optical Burst Switching (OBS) has become one of the most important techniques for next generations of ultra-high speed optical internetworking. Performance evaluation of OBS networking models is thus very critical in the evaluation of the effectiveness of different routing and switching algorithms. This paper presents both computer simulation and analytical models for evaluating the effectiveness of OBS networking, especially the burst blocking probability. We develop a simulation model for OBS networking, namely OBSWDM-Simu based on OMNeT++ platform. The model is capable of simulating control protocols of OBS networks and simultaneously incorporating the impacts of physical layer effects on the blocking probability. We also present the analytical models for OBS networking based on the queuing theory in order to compare with the results of OBSWDM-Simu model.Chuyển mạch burst quang là xu hướng của công nghệ mạng quang thế hệ mới. Việc nghiên cứu các mô hình đánh giá hiệu quả thực thi của mạng chuyển mạch burst quang là điều cần thiết và có ý nghĩa đặc biệt quan trọng. Bài báo tập trung nghiên cứu các mô hình đánh giá hiệu quả thực thi của mạng chuyển mạch burst quang, đặc biệt là xác suất nghẽn burst trong mạng. Chúng tôi đề xuất một mô hình mô phỏng mạng chuyển mạch burst quang có tên OBSWDM-Simu được triển khai trên OMNeT++. Mô hình OBSWDM-Simu cho phép mô phỏng các giao thức điều khiển trong mạng chuyển mạch burst quang tốc độ cao có xét đến ảnh hưởng của các hiệu ứng lớp vật lý. Chúng tôi cũng trình bày các mô hình phân tích mạng chuyển mạch burst quang dựa trên lý thuyết hàng đợi để so sánh với kết quả mô phỏng thực hiện bởi mô hình OBSWDM-Simu.

    Multiclass data plane recovery using different recovery schemes in SDN: a simulation analysis

    Get PDF
    To provide dependable services SDN networks need to be resilient to link or switching node failures. This entails, when faults occur, ensuring differentiated types of recovery, according to carried traffic, to routing paths. However, the choice of the recovery scheme best suited to each traffic class is not direct, nor is obvious the impact of the combination of various recovery schemes, according to traffic classes. We explore the usage of different recovery schemes for traffic with distinct requirements Simulation analysis confirms that using different recovery schemes for distinct types of traffic does create differentiated effects in terms of traffic carried and bandwidth usage.info:eu-repo/semantics/publishedVersio

    An Investigation into the Performance Evaluation of Connected Vehicle Applications: From Real-World Experiment to Parallel Simulation Paradigm

    Get PDF
    A novel system was developed that provides drivers lane merge advisories, using vehicle trajectories obtained through Dedicated Short Range Communication (DSRC). It was successfully tested on a freeway using three vehicles, then targeted for further testing, via simulation. The failure of contemporary simulators to effectively model large, complex urban transportation networks then motivated further research into distributed and parallel traffic simulation. An architecture for a closed-loop, parallel simulator was devised, using a new algorithm that accounts for boundary nodes, traffic signals, intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, Tennessee road network more efficiently than tools like METIS, which increase interprocess communications (IPC) overhead by partitioning more transportation corridors. The simulator uses logarithmic accumulation to synchronize parallel simulations, further reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred by a linear accumulation model

    Burst Loss Reduction Using Fuzzy-Based Adaptive Burst Length Assembly Technique for Optical Burst Switched Networks

    Get PDF
    The optical burst switching (OBS) paradigm is perceived as an intermediate switching technology prior to the realization of an all-optical network. Burst assembly is the first process that takes place at the edge of an OBS network.  It is crucial to the performance of an OBS network because it greatly influences loss and delay on such networks.  Burst assembly is an important process while  burst loss ratio (BLR) and delay are important issues in OBS.  In this paper, an intelligent burst assembly algorithm called a Fuzzy-based Adaptive Length Burst Assembly (FALBA) algorithm that is based on fuzzy logic and tuning of fuzzy logic parameters is proposed for OBS network. FALBA was evaluated against itself and the fuzzy adaptive threshold (FAT) burst assembly algorithm using 12 configurations via simulation. The 12 configurations were derived from three rule sets (denoted 0,1,2), two defuzzification techniques (Centroid [C]and Largest of Maximum[L]) and two aggregation methods (Max[M] and Sum[S]) of fuzzy logic.  Simulation results have shown that FALBA0LM has the best BLR performance when compared to its other configurations and the FAT. However, with respect to delay, FAT only outperforms all configurations of FALBA at low loads (0.0-0.4) but the performance of FAT also decreases as the load (0.4-1.0) increases. Therefore, at high loads (0.4-1.0)  FALBA2CS has the best delay performance. Our results deduce that FALBA0LM can be use
    corecore