161 research outputs found

    IEEE 802.11ax: challenges and requirements for future high efficiency wifi

    Get PDF
    The popularity of IEEE 802.11 based wireless local area networks (WLANs) has increased significantly in recent years because of their ability to provide increased mobility, flexibility, and ease of use, with reduced cost of installation and maintenance. This has resulted in massive WLAN deployment in geographically limited environments that encompass multiple overlapping basic service sets (OBSSs). In this article, we introduce IEEE 802.11ax, a new standard being developed by the IEEE 802.11 Working Group, which will enable efficient usage of spectrum along with an enhanced user experience. We expose advanced technological enhancements proposed to improve the efficiency within high density WLAN networks and explore the key challenges to the upcoming amendment.Peer ReviewedPostprint (author's final draft

    Performance Enhancement of IEEE 802.11AX in Ultra-Dense Wireless Networks

    Get PDF
    IEEE 802.11ax, which is one emerging WLAN standard, aims at providing highly efficient communication in ultra-dense wireless networks. However, due to a large number of stations (STAs) in dense deployment scenarios and diverse services to be supported, there are many technical challenges to be overcome. Firstly, the potential high packet collision rate significantly degrades the network efficiency of WLAN. In this thesis, we propose an adaptive station (STA) grouping scheme to overcome this challenge in IEEE 802.11ax using Uplink OFDMA Random Access (UORA). In order to achieve optimal utilization efficiency of resource units (RUs), we first analyze the relationship between group size and RU efficiency. Based on this result, an adaptive STA grouping algorithm is proposed to cope with the performance fluctuation of 802.11ax due to remainder stations after grouping. The analysis and simulation results demonstrate that our adaptive grouping algorithm dramatically improves the performance of both the overall system and each STA in the ultra-dense wireless network. Meanwhile, due to the limited RU efficiency of UORA, we adopt the proposed grouping scheme in the Buffer State Report (BSR) based two-stage mechanism (BTM) to enhance the Uplink (UL) Multi-user (MU) access in 802.11ax. Then we propose an adaptive BTM grouping scheme. The analysis results of average RU for each STA, average throughput of the whole system and each STA are derived. The numerical results show that the proposed adaptive grouping scheme provides 2.55, 413.02 and 3712.04 times gains in throughput compared with the UORA grouping, conventional BTM, and conventional UORA, respectively. Furthermore, in order to provide better QoS experience in the ultra-dense network with diverse IoT services, we propose a Hybrid BTM Grouping algorithm to guarantee the QoS requirement from high priority STAs. The concept of ``QoS Utility is introduced to evaluate the satisfaction of transmission. The numerical results demonstrate that the proposed Hybrid BTM grouping scheme has better performance in BSR delivery rate as well as QoS utility than the conventional BTM grouping

    IEEE 802.11be Wi-Fi 7: Feature Summary and Performance Evaluation

    Full text link
    While the pace of commercial scale application of Wi-Fi 6 accelerates, the IEEE 802.11 Working Group is about to complete the development of a new amendment standard IEEE 802.11be -- Extremely High Throughput (EHT), also known as Wi-Fi 7, which can be used to meet the demand for the throughput of 4K/8K videos up to tens of Gbps and low-latency video applications such as virtual reality (VR) and augmented reality (AR). Wi-Fi 7 not only scales Wi-Fi 6 with doubled bandwidth, but also supports real-time applications, which brings revolutionary changes to Wi-Fi. In this article, we start by introducing the main objectives and timeline of Wi-Fi 7 and then list the latest key techniques which promote the performance improvement of Wi-Fi 7. Finally, we validate the most critical objectives of Wi-Fi 7 -- the potential up to 30 Gbps throughput and lower latency. System-level simulation results suggest that by combining the new techniques, Wi-Fi 7 achieves 30 Gbps throughput and lower latency than Wi-Fi 6.Comment: 6 pages, 4 figure

    A Review on OFDMA and MU-MIMO MAC Protocols for upcoming IEEE Standard 802.11ax

    Get PDF
    IEEE introduced a new standard IEEE 802.11ax for the next generation WLANs.As we know,the current throughput is very low because of the current Media Access Control(MAC) in present wireless area networks.So,the concept of Orthogonal Frequency Multiple Access(OFDMA) to facilitate multi user access is introduced.The main challenges of adopting OFDMA areoverhead reduction and synchronization.To meet these challenges this paper revised an OFDMA based OMAX protocol.And due to various various bandwidth consuming applications and devices today’s WLANs have become stressed and low at throughput.To handle this problem MU MIMO is used to improve the performance of WLANs.This paper surveys uplink/downlink mutli user MAC protocols for MIMO enabled devices.It also identifies the key requirements of MAC protocol design

    An optimization of network performance in IEEE 802.11ax dense networks

    Get PDF
    The paper focuses on the optimization of IEEE 802.11ax dense networks. The results were obtained with the use of the NS-3 simulator. Various network topologies were analyzed and compared. The advantage of using MSDU and MPDU aggregations in a dense network environment was shown. The process of improving the network performance for changes in the transmitter power value, CCA Threshold, and antenna gain was presented. The positive influence of BSS coloring mechanism on overal network efficiency was revealed. The influence of receiver sensitivity on network performance was determined

    A PERFORMANCE ANALYSIS OF IEEE 802.11ax NETWORKS

    Get PDF
    The paper is focused on the forthcoming IEEE 802.11ax standard and its influence on Wi-Fi networks performance. The most important features dedicated to improve transmission effectiveness are presented. Furthermore, the simulation results of a new transmission modes are described. The comparison with the legacy IEEE 802.11n/ac standards shows that even partial implementation of a new standard should bring significant throughput improvements
    corecore