31 research outputs found

    Optimized Scalable Image and Video Transmission for MIMO Wireless Channels

    Get PDF
    In this chapter, we focus on proposing new strategies to efficiently transfer a compressed image/video content through wireless links using a multiple antenna technology. The proposed solutions can be considered as application layer physical layer (APP-PHY) cross layer design methods as they involve optimizing both application and physical layers. After a wide state-of-the-art study, we present two main solutions. The first focuses on using a new precoding algorithm that takes into account the image/video content structure when assigning transmission powers. We showed that its results are better than the existing conventional precoders. Second, a link adaptation process is integrated to efficiently assign coding parameters as a function of the channel state. Simulations over a realistic channel environment show that the link adaptation activates a dynamic process that results in a good image/video reconstruction quality even if the channel is varying. Finally, we incorporated soft decoding algorithms at the receiver side, and we showed that they could induce further improvements. In fact, almost 5 dB peak signal-to-noise ratio (PSNR) improvements are demonstrated in the case of transmission over a Rayleigh channel

    A Robust Content-Based JPWL Transmission Over a Realistic MIMO Channel Under Perceptual Constraints

    No full text
    International audienceThis paper proposes a global approach of JPWL (ISO/IEC 15444-11) image transmission over a realistic wireless channel able to ensure the best Quality of Service (QoS). In order to exploit the channel diversity, we consider a Closed-Loop MIMO-OFDM scheme with different precoder designs. In particular, the high flexibility of QoS precoder allows taking into account the scalability of JPWL jointly with the instantaneous MIMO channel status. This increases the visual quality of received images. The monitoring of the quality is made by a reduced-reference metric (QIP) based on object's saliency and interest points, both linked to human perception. It is performed in association with a robust JPWL decoder to determine the optimal decoding configuration in terms of PSNR. The proposed scheme provides very good results and its performance is shown through a realistic wireless channel

    An unequal modulation scheme for the transmission of compressed multimedia data over MIMO-OFDM systems

    Get PDF
    Modern video/image source coders employ data compression techniques which encode information that are not equally important. Transform based or subband coders, compress data into their respective low-frequency and high-frequency components. In wireless/mobile communication systems, data representing the low-frequency components are more sensitive to the time-varying nature of channel conditions and propagation environments. To deal with this problem, we propose an optimum transceiver structure for a combined source-modulation coded MIMO-OFDM system with adaptive eigen-beamforming. Using an unequal adaptive modulator, we maximize the channel-to-noise ratio (CNR) based on a lookup matrix-adaptive bit and power allocation (LM-ABPA) scheme to sort and allocate subcarriers with the highest SNR to the low-frequency components of the compressed data, and adjusting the signal constellation/modulation type respectively. In comparison to other transmission systems, simulation results based on the application of compressed images showed that the proposed unequal adaptive modulation scheme achieves significant performance gains under a constant data rate loa

    Joint source-channel rate allocation in parallel channels

    Full text link

    Joint Source-Channel Rate Allocation in Parallel Channels

    Full text link

    A Study on the Usage of Cross-Layer Power Control and Forward Error Correction for Embedded Video Transmission over Wireless Links

    Get PDF
    Cross-layering is a design paradigm for overcoming the limitations deriving from the ISO/OSI layering principle, thus improving the performance of communications in specific scenarios, such as wireless multimedia communications. However, most available solutions are based on empirical considerations, and do not provide a theoretical background supporting such approaches. The paper aims at providing an analytical framework for the study of single-hop video delivery over a wireless link, enabling cross-layer interactions for performance optimization using power control and FEC and providing a useful tool to determine the potential gain deriving from the employment of such design paradigm. The analysis is performed using rate-distortion information of an embedded video bitstream jointly with a Lagrangian power minimization approach. Simulation results underline that cross-layering can provide relevant improvement in specific environments and that the proposed approach is able to capitalize on the advantage deriving from its deployment

    Source-channel coding for robust image transmission and for dirty-paper coding

    Get PDF
    In this dissertation, we studied two seemingly uncorrelated, but conceptually related problems in terms of source-channel coding: 1) wireless image transmission and 2) Costa ("dirty-paper") code design. In the first part of the dissertation, we consider progressive image transmission over a wireless system employing space-time coded OFDM. The space-time coded OFDM system based on a newly built broadband MIMO fading model is theoretically evaluated by assuming perfect channel state information (CSI) at the receiver for coherent detection. Then an adaptive modulation scheme is proposed to pick the constellation size that offers the best reconstructed image quality for each average signal-to-noise ratio (SNR). A more practical scenario is also considered without the assumption of perfect CSI. We employ low-complexity decision-feedback decoding for differentially space- time coded OFDM systems to exploit transmitter diversity. For JSCC, we adopt a product channel code structure that is proven to provide powerful error protection and bursty error correction. To further improve the system performance, we also apply the powerful iterative (turbo) coding techniques and propose the iterative decoding of differentially space-time coded multiple descriptions of images. The second part of the dissertation deals with practical dirty-paper code designs. We first invoke an information-theoretical interpretation of algebraic binning and motivate the code design guidelines in terms of source-channel coding. Then two dirty-paper code designs are proposed. The first is a nested turbo construction based on soft-output trellis-coded quantization (SOTCQ) for source coding and turbo trellis- coded modulation (TTCM) for channel coding. A novel procedure is devised to balance the dimensionalities of the equivalent lattice codes corresponding to SOTCQ and TTCM. The second dirty-paper code design employs TCQ and IRA codes for near-capacity performance. This is done by synergistically combining TCQ with IRA codes so that they work together as well as they do individually. Our TCQ/IRA design approaches the dirty-paper capacity limit at the low rate regime (e.g., < 1:0 bit/sample), while our nested SOTCQ/TTCM scheme provides the best performs so far at medium-to-high rates (e.g., >= 1:0 bit/sample). Thus the two proposed practical code designs are complementary to each other

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    Flexible Macroblock Ordering for Context-Aware Ultrasound Video Transmission over Mobile WiMAX

    Get PDF
    The most recent network technologies are enabling a variety of new applications, thanks to the provision of increased bandwidth and better management of Quality of Service. Nevertheless, telemedical services involving multimedia data are still lagging behind, due to the concern of the end users, that is, clinicians and also patients, about the low quality provided. Indeed, emerging network technologies should be appropriately exploited by designing the transmission strategy focusing on quality provision for end users. Stemming from this principle, we propose here a context-aware transmission strategy for medical video transmission over WiMAX systems. Context, in terms of regions of interest (ROI) in a specific session, is taken into account for the identification of multiple regions of interest, and compression/transmission strategies are tailored to such context information. We present a methodology based on H.264 medical video compression and Flexible Macroblock Ordering (FMO) for ROI identification. Two different unequal error protection methodologies, providing higher protection to the most diagnostically relevant data, are presented
    corecore