1,082 research outputs found

    An O(T log T) reduction from RAM computations to satisfiability

    Get PDF
    AbstractA new method is given for obtaining a boolean expression whose satisfiability is equivalent to the existence of an accepting computation of some nondeterministic machine. Although starting from random access machines, this method gives an expression of the same O(T log T) length as the best reduction from general Turing machines

    Alternation-Trading Proofs, Linear Programming, and Lower Bounds

    Get PDF
    A fertile area of recent research has demonstrated concrete polynomial time lower bounds for solving natural hard problems on restricted computational models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path, Mod6-SAT, Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow a certain proof-by-contradiction strategy that we call alternation-trading. An important open problem is to determine how powerful such proofs can possibly be. We propose a methodology for studying these proofs that makes them amenable to both formal analysis and automated theorem proving. We prove that the search for better lower bounds can often be turned into a problem of solving a large series of linear programming instances. Implementing a small-scale theorem prover based on this result, we extract new human-readable time lower bounds for several problems. This framework can also be used to prove concrete limitations on the current techniques.Comment: To appear in STACS 2010, 12 page

    A Casual Tour Around a Circuit Complexity Bound

    Full text link
    I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.Comment: 21 pages, 2 figures. An earlier version appeared in SIGACT News, September 201

    Complexity Hierarchies Beyond Elementary

    Full text link
    We introduce a hierarchy of fast-growing complexity classes and show its suitability for completeness statements of many non elementary problems. This hierarchy allows the classification of many decision problems with a non-elementary complexity, which occur naturally in logic, combinatorics, formal languages, verification, etc., with complexities ranging from simple towers of exponentials to Ackermannian and beyond.Comment: Version 3 is the published version in TOCT 8(1:3), 2016. I will keep updating the catalogue of problems from Section 6 in future revision

    Strong ETH Breaks With Merlin and Arthur: Short Non-Interactive Proofs of Batch Evaluation

    Get PDF
    We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for every arithmetic circuit C(x1,,xn)C(x_1,\ldots,x_n) of size ss and degree dd over a field F{\mathbb F}, and any inputs a1,,aKFna_1,\ldots,a_K \in {\mathbb F}^n, \bullet the Prover sends the Verifier the values C(a1),,C(aK)FC(a_1), \ldots, C(a_K) \in {\mathbb F} and a proof of O~(Kd)\tilde{O}(K \cdot d) length, and \bullet the Verifier tosses poly(log(dKF/ε))\textrm{poly}(\log(dK|{\mathbb F}|/\varepsilon)) coins and can check the proof in about O~(K(n+d)+s)\tilde{O}(K \cdot(n + d) + s) time, with probability of error less than ε\varepsilon. For small degree dd, this "Merlin-Arthur" proof system (a.k.a. MA-proof system) runs in nearly-linear time, and has many applications. For example, we obtain MA-proof systems that run in cnc^{n} time (for various c<2c < 2) for the Permanent, #\#Circuit-SAT for all sublinear-depth circuits, counting Hamiltonian cycles, and infeasibility of 00-11 linear programs. In general, the value of any polynomial in Valiant's class VP{\sf VP} can be certified faster than "exhaustive summation" over all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-Merlin Strong ETH posed by Russell Impagliazzo and others. We also give a three-round (AMA) proof system for quantified Boolean formulas running in 22n/3+o(n)2^{2n/3+o(n)} time, nearly-linear time MA-proof systems for counting orthogonal vectors in a collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in nk/2+O(1)n^{k/2+O(1)}-time for counting kk-cliques in graphs. We point to some potential future directions for refuting the Nondeterministic Strong ETH.Comment: 17 page

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation

    Elements of computability, decidability, and complexity (Third edition)

    Get PDF
    These lecture notes are intended to introduce the reader to the basic notions of computability theory, decidability, and complexity. More information on these subjects can be found in classical books such as [Cut80,Dav58,Her69,HoU79,Rog67]. The results reported in these notes are taken from those books and in various parts we closely follow their style of presentation. The reader is encouraged to look at those books for improving his/her knowledge on these topics. Some parts of the chapter on complexity are taken from the lecture notes of a beautiful course given by Prof. Leslie Valiant at Edinburgh University, Scotland, in 1979. It was, indeed, a very stimulating and enjoyable course. For the notions of Predicate Calculus we have used in this book the reader may refer to [Men87]. I would like to thank Dr. Maurizio Proietti at IASI-CNR (Roma, Italy), my colleagues, and my students at the University of Roma Tor Vergata and, in particular, Michele Martone. They have been for me a source of continuous inspiration and enthusiasm. Finally, I would like to thank Dr. Gioacchino Onorati and Lorenzo Costantini of the Aracne Publishing Company for their helpful cooperation
    corecore