41,851 research outputs found

    Time vs. Information Tradeoffs for Leader Election in Anonymous Trees

    Full text link
    The leader election task calls for all nodes of a network to agree on a single node. If the nodes of the network are anonymous, the task of leader election is formulated as follows: every node vv of the network must output a simple path, coded as a sequence of port numbers, such that all these paths end at a common node, the leader. In this paper, we study deterministic leader election in anonymous trees. Our aim is to establish tradeoffs between the allocated time τ\tau and the amount of information that has to be given a priori\textit{a priori} to the nodes to enable leader election in time τ\tau in all trees for which leader election in this time is at all possible. Following the framework of algorithms with advice\textit{algorithms with advice}, this information (a single binary string) is provided to all nodes at the start by an oracle knowing the entire tree. The length of this string is called the size of advice\textit{size of advice}. For an allocated time τ\tau, we give upper and lower bounds on the minimum size of advice sufficient to perform leader election in time τ\tau. We consider nn-node trees of diameter diamDdiam \leq D. While leader election in time diamdiam can be performed without any advice, for time diam1diam-1 we give tight upper and lower bounds of Θ(logD)\Theta (\log D). For time diam2diam-2 we give tight upper and lower bounds of Θ(logD)\Theta (\log D) for even values of diamdiam, and tight upper and lower bounds of Θ(logn)\Theta (\log n) for odd values of diamdiam. For the time interval [βdiam,diam3][\beta \cdot diam, diam-3] for constant β>1/2\beta >1/2, we prove an upper bound of O(nlognD)O(\frac{n\log n}{D}) and a lower bound of Ω(nD)\Omega(\frac{n}{D}), the latter being valid whenever diamdiam is odd or when the time is at most diam4diam-4. Finally, for time αdiam\alpha \cdot diam for any constant α<1/2\alpha <1/2 (except for the case of very small diameters), we give tight upper and lower bounds of Θ(n)\Theta (n)

    Efficient Construction of Probabilistic Tree Embeddings

    Get PDF
    In this paper we describe an algorithm that embeds a graph metric (V,dG)(V,d_G) on an undirected weighted graph G=(V,E)G=(V,E) into a distribution of tree metrics (T,DT)(T,D_T) such that for every pair u,vVu,v\in V, dG(u,v)dT(u,v)d_G(u,v)\leq d_T(u,v) and ET[dT(u,v)]O(logn)dG(u,v){\bf{E}}_{T}[d_T(u,v)]\leq O(\log n)\cdot d_G(u,v). Such embeddings have proved highly useful in designing fast approximation algorithms, as many hard problems on graphs are easy to solve on tree instances. For a graph with nn vertices and mm edges, our algorithm runs in O(mlogn)O(m\log n) time with high probability, which improves the previous upper bound of O(mlog3n)O(m\log^3 n) shown by Mendel et al.\,in 2009. The key component of our algorithm is a new approximate single-source shortest-path algorithm, which implements the priority queue with a new data structure, the "bucket-tree structure". The algorithm has three properties: it only requires linear time in the number of edges in the input graph; the computed distances have a distance preserving property; and when computing the shortest-paths to the kk-nearest vertices from the source, it only requires to visit these vertices and their edge lists. These properties are essential to guarantee the correctness and the stated time bound. Using this shortest-path algorithm, we show how to generate an intermediate structure, the approximate dominance sequences of the input graph, in O(mlogn)O(m \log n) time, and further propose a simple yet efficient algorithm to converted this sequence to a tree embedding in O(nlogn)O(n\log n) time, both with high probability. Combining the three subroutines gives the stated time bound of the algorithm. Then we show that this efficient construction can facilitate some applications. We proved that FRT trees (the generated tree embedding) are Ramsey partitions with asymptotically tight bound, so the construction of a series of distance oracles can be accelerated

    Distributed Approximation of Minimum Routing Cost Trees

    Full text link
    We study the NP-hard problem of approximating a Minimum Routing Cost Spanning Tree in the message passing model with limited bandwidth (CONGEST model). In this problem one tries to find a spanning tree of a graph GG over nn nodes that minimizes the sum of distances between all pairs of nodes. In the considered model every node can transmit a different (but short) message to each of its neighbors in each synchronous round. We provide a randomized (2+ϵ)(2+\epsilon)-approximation with runtime O(D+lognϵ)O(D+\frac{\log n}{\epsilon}) for unweighted graphs. Here, DD is the diameter of GG. This improves over both, the (expected) approximation factor O(logn)O(\log n) and the runtime O(Dlog2n)O(D\log^2 n) of the best previously known algorithm. Due to stating our results in a very general way, we also derive an (optimal) runtime of O(D)O(D) when considering O(logn)O(\log n)-approximations as done by the best previously known algorithm. In addition we derive a deterministic 22-approximation

    Sparse Fault-Tolerant BFS Trees

    Full text link
    This paper addresses the problem of designing a sparse {\em fault-tolerant} BFS tree, or {\em FT-BFS tree} for short, namely, a sparse subgraph TT of the given network GG such that subsequent to the failure of a single edge or vertex, the surviving part TT' of TT still contains a BFS spanning tree for (the surviving part of) GG. Our main results are as follows. We present an algorithm that for every nn-vertex graph GG and source node ss constructs a (single edge failure) FT-BFS tree rooted at ss with O(n \cdot \min\{\Depth(s), \sqrt{n}\}) edges, where \Depth(s) is the depth of the BFS tree rooted at ss. This result is complemented by a matching lower bound, showing that there exist nn-vertex graphs with a source node ss for which any edge (or vertex) FT-BFS tree rooted at ss has Ω(n3/2)\Omega(n^{3/2}) edges. We then consider {\em fault-tolerant multi-source BFS trees}, or {\em FT-MBFS trees} for short, aiming to provide (following a failure) a BFS tree rooted at each source sSs\in S for some subset of sources SVS\subseteq V. Again, tight bounds are provided, showing that there exists a poly-time algorithm that for every nn-vertex graph and source set SVS \subseteq V of size σ\sigma constructs a (single failure) FT-MBFS tree T(S)T^*(S) from each source siSs_i \in S, with O(σn3/2)O(\sqrt{\sigma} \cdot n^{3/2}) edges, and on the other hand there exist nn-vertex graphs with source sets SVS \subseteq V of cardinality σ\sigma, on which any FT-MBFS tree from SS has Ω(σn3/2)\Omega(\sqrt{\sigma}\cdot n^{3/2}) edges. Finally, we propose an O(logn)O(\log n) approximation algorithm for constructing FT-BFS and FT-MBFS structures. The latter is complemented by a hardness result stating that there exists no Ω(logn)\Omega(\log n) approximation algorithm for these problems under standard complexity assumptions

    Multi-Embedding of Metric Spaces

    Full text link
    Metric embedding has become a common technique in the design of algorithms. Its applicability is often dependent on how high the embedding's distortion is. For example, embedding finite metric space into trees may require linear distortion as a function of its size. Using probabilistic metric embeddings, the bound on the distortion reduces to logarithmic in the size. We make a step in the direction of bypassing the lower bound on the distortion in terms of the size of the metric. We define "multi-embeddings" of metric spaces in which a point is mapped onto a set of points, while keeping the target metric of polynomial size and preserving the distortion of paths. The distortion obtained with such multi-embeddings into ultrametrics is at most O(log Delta loglog Delta) where Delta is the aspect ratio of the metric. In particular, for expander graphs, we are able to obtain constant distortion embeddings into trees in contrast with the Omega(log n) lower bound for all previous notions of embeddings. We demonstrate the algorithmic application of the new embeddings for two optimization problems: group Steiner tree and metrical task systems
    corecore