5,082 research outputs found

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Asymptotically exponential hitting times and metastability: a pathwise approach without reversibility

    Get PDF
    We study the hitting times of Markov processes to target set GG, starting from a reference configuration x0x_0 or its basin of attraction. The configuration x0x_0 can correspond to the bottom of a (meta)stable well, while the target GG could be either a set of saddle (exit) points of the well, or a set of further (meta)stable configurations. Three types of results are reported: (1) A general theory is developed, based on the path-wise approach to metastability, which has three important attributes. First, it is general in that it does not assume reversibility of the process, does not focus only on hitting times to rare events and does not assume a particular starting measure. Second, it relies only on the natural hypothesis that the mean hitting time to GG is asymptotically longer than the mean recurrence time to x0x_0 or GG. Third, despite its mathematical simplicity, the approach yields precise and explicit bounds on the corrections to exponentiality. (2) We compare and relate different metastability conditions proposed in the literature so to eliminate potential sources of confusion. This is specially relevant for evolutions of infinite-volume systems, whose treatment depends on whether and how relevant parameters (temperature, fields) are adjusted. (3) We introduce the notion of early asymptotic exponential behavior to control time scales asymptotically smaller than the mean-time scale. This control is particularly relevant for systems with unbounded state space where nucleations leading to exit from metastability can happen anywhere in the volume. We provide natural sufficient conditions on recurrence times for this early exponentiality to hold and show that it leads to estimations of probability density functions

    Factor models on locally tree-like graphs

    Full text link
    We consider homogeneous factor models on uniformly sparse graph sequences converging locally to a (unimodular) random tree TT, and study the existence of the free energy density ϕ\phi, the limit of the log-partition function divided by the number of vertices nn as nn tends to infinity. We provide a new interpolation scheme and use it to prove existence of, and to explicitly compute, the quantity ϕ\phi subject to uniqueness of a relevant Gibbs measure for the factor model on TT. By way of example we compute ϕ\phi for the independent set (or hard-core) model at low fugacity, for the ferromagnetic Ising model at all parameter values, and for the ferromagnetic Potts model with both weak enough and strong enough interactions. Even beyond uniqueness regimes our interpolation provides useful explicit bounds on ϕ\phi. In the regimes in which we establish existence of the limit, we show that it coincides with the Bethe free energy functional evaluated at a suitable fixed point of the belief propagation (Bethe) recursions on TT. In the special case that TT has a Galton-Watson law, this formula coincides with the nonrigorous "Bethe prediction" obtained by statistical physicists using the "replica" or "cavity" methods. Thus our work is a rigorous generalization of these heuristic calculations to the broader class of sparse graph sequences converging locally to trees. We also provide a variational characterization for the Bethe prediction in this general setting, which is of independent interest.Comment: Published in at http://dx.doi.org/10.1214/12-AOP828 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore