16,368 research outputs found

    DNF Sparsification and a Faster Deterministic Counting Algorithm

    Full text link
    Given a DNF formula on n variables, the two natural size measures are the number of terms or size s(f), and the maximum width of a term w(f). It is folklore that short DNF formulas can be made narrow. We prove a converse, showing that narrow formulas can be sparsified. More precisely, any width w DNF irrespective of its size can be ϵ\epsilon-approximated by a width ww DNF with at most (wlog(1/ϵ))O(w)(w\log(1/\epsilon))^{O(w)} terms. We combine our sparsification result with the work of Luby and Velikovic to give a faster deterministic algorithm for approximately counting the number of satisfying solutions to a DNF. Given a formula on n variables with poly(n) terms, we give a deterministic nO~(loglog(n))n^{\tilde{O}(\log \log(n))} time algorithm that computes an additive ϵ\epsilon approximation to the fraction of satisfying assignments of f for \epsilon = 1/\poly(\log n). The previous best result due to Luby and Velickovic from nearly two decades ago had a run-time of nexp(O(loglogn))n^{\exp(O(\sqrt{\log \log n}))}.Comment: To appear in the IEEE Conference on Computational Complexity, 201

    The Covering Problem

    Full text link
    An important endeavor in computer science is to understand the expressive power of logical formalisms over discrete structures, such as words. Naturally, "understanding" is not a mathematical notion. This investigation requires therefore a concrete objective to capture this understanding. In the literature, the standard choice for this objective is the membership problem, whose aim is to find a procedure deciding whether an input regular language can be defined in the logic under investigation. This approach was cemented as the right one by the seminal work of Sch\"utzenberger, McNaughton and Papert on first-order logic and has been in use since then. However, membership questions are hard: for several important fragments, researchers have failed in this endeavor despite decades of investigation. In view of recent results on one of the most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an explanation may be that membership is too restrictive as a setting. These new results were indeed obtained by considering more general problems than membership, taking advantage of the increased flexibility of the enriched mathematical setting. This opens a promising research avenue and efforts have been devoted at identifying and solving such problems for natural fragments. Until now however, these problems have been ad hoc, most fragments relying on a specific one. A unique new problem replacing membership as the right one is still missing. The main contribution of this paper is a suitable candidate to play this role: the Covering Problem. We motivate this problem with 3 arguments. First, it admits an elementary set theoretic formulation, similar to membership. Second, we are able to reexplain or generalize all known results with this problem. Third, we develop a mathematical framework and a methodology tailored to the investigation of this problem
    corecore