475 research outputs found

    Improved Approximation Algorithms for (Budgeted) Node-weighted Steiner Problems

    Full text link
    Moss and Rabani[12] study constrained node-weighted Steiner tree problems with two independent weight values associated with each node, namely, cost and prize (or penalty). They give an O(log n)-approximation algorithm for the prize-collecting node-weighted Steiner tree problem (PCST). They use the algorithm for PCST to obtain a bicriteria (2, O(log n))-approximation algorithm for the Budgeted node-weighted Steiner tree problem. Their solution may cost up to twice the budget, but collects a factor Omega(1/log n) of the optimal prize. We improve these results from at least two aspects. Our first main result is a primal-dual O(log h)-approximation algorithm for a more general problem, prize-collecting node-weighted Steiner forest, where we have (h) demands each requesting the connectivity of a pair of vertices. Our algorithm can be seen as a greedy algorithm which reduces the number of demands by choosing a structure with minimum cost-to-reduction ratio. This natural style of argument (also used by Klein and Ravi[10] and Guha et al.[8]) leads to a much simpler algorithm than that of Moss and Rabani[12] for PCST. Our second main contribution is for the Budgeted node-weighted Steiner tree problem, which is also an improvement to [12] and [8]. In the unrooted case, we improve upon an O(log^2(n))-approximation of [8], and present an O(log n)-approximation algorithm without any budget violation. For the rooted case, where a specified vertex has to appear in the solution tree, we improve the bicriteria result of [12] to a bicriteria approximation ratio of (1+eps, O(log n)/(eps^2)) for any positive (possibly subconstant) (eps). That is, for any permissible budget violation (1+eps), we present an algorithm achieving a tradeoff in the guarantee for prize. Indeed, we show that this is almost tight for the natural linear-programming relaxation used by us as well as in [12].Comment: To appear in ICALP 201

    Connectivity Oracles for Graphs Subject to Vertex Failures

    Full text link
    We introduce new data structures for answering connectivity queries in graphs subject to batched vertex failures. A deterministic structure processes a batch of ddd\leq d_{\star} failed vertices in O~(d3)\tilde{O}(d^3) time and thereafter answers connectivity queries in O(d)O(d) time. It occupies space O(dmlogn)O(d_{\star} m\log n). We develop a randomized Monte Carlo version of our data structure with update time O~(d2)\tilde{O}(d^2), query time O(d)O(d), and space O~(m)\tilde{O}(m) for any failure bound dnd\le n. This is the first connectivity oracle for general graphs that can efficiently deal with an unbounded number of vertex failures. We also develop a more efficient Monte Carlo edge-failure connectivity oracle. Using space O(nlog2n)O(n\log^2 n), dd edge failures are processed in O(dlogdloglogn)O(d\log d\log\log n) time and thereafter, connectivity queries are answered in O(loglogn)O(\log\log n) time, which are correct w.h.p. Our data structures are based on a new decomposition theorem for an undirected graph G=(V,E)G=(V,E), which is of independent interest. It states that for any terminal set UVU\subseteq V we can remove a set BB of U/(s2)|U|/(s-2) vertices such that the remaining graph contains a Steiner forest for UBU-B with maximum degree ss

    On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint

    Full text link
    In the problem of minimum connected dominating set with routing cost constraint, we are given a graph G=(V,E)G=(V,E), and the goal is to find the smallest connected dominating set DD of GG such that, for any two non-adjacent vertices uu and vv in GG, the number of internal nodes on the shortest path between uu and vv in the subgraph of GG induced by D{u,v}D \cup \{u,v\} is at most α\alpha times that in GG. For general graphs, the only known previous approximability result is an O(logn)O(\log n)-approximation algorithm (n=Vn=|V|) for α=1\alpha = 1 by Ding et al. For any constant α>1\alpha > 1, we give an O(n11α(logn)1α)O(n^{1-\frac{1}{\alpha}}(\log n)^{\frac{1}{\alpha}})-approximation algorithm. When α5\alpha \geq 5, we give an O(nlogn)O(\sqrt{n}\log n)-approximation algorithm. Finally, we prove that, when α=2\alpha =2, unless NPDTIME(npolylogn)NP \subseteq DTIME(n^{poly\log n}), for any constant ϵ>0\epsilon > 0, the problem admits no polynomial-time 2log1ϵn2^{\log^{1-\epsilon}n}-approximation algorithm, improving upon the Ω(logn)\Omega(\log n) bound by Du et al. (albeit under a stronger hardness assumption)

    A Tight Bound for Shortest Augmenting Paths on Trees

    Full text link
    The shortest augmenting path technique is one of the fundamental ideas used in maximum matching and maximum flow algorithms. Since being introduced by Edmonds and Karp in 1972, it has been widely applied in many different settings. Surprisingly, despite this extensive usage, it is still not well understood even in the simplest case: online bipartite matching problem on trees. In this problem a bipartite tree T=(WB,E)T=(W \uplus B, E) is being revealed online, i.e., in each round one vertex from BB with its incident edges arrives. It was conjectured by Chaudhuri et. al. [K. Chaudhuri, C. Daskalakis, R. D. Kleinberg, and H. Lin. Online bipartite perfect matching with augmentations. In INFOCOM 2009] that the total length of all shortest augmenting paths found is O(nlogn)O(n \log n). In this paper, we prove a tight O(nlogn)O(n \log n) upper bound for the total length of shortest augmenting paths for trees improving over O(nlog2n)O(n \log^2 n) bound [B. Bosek, D. Leniowski, P. Sankowski, and A. Zych. Shortest augmenting paths for online matchings on trees. In WAOA 2015].Comment: 22 pages, 10 figure

    Parameterized (in)approximability of subset problems

    Full text link
    We discuss approximability and inapproximability in FPT-time for a large class of subset problems where a feasible solution SS is a subset of the input data and the value of SS is S|S|. The class handled encompasses many well-known graph, set, or satisfiability problems such as Dominating Set, Vertex Cover, Set Cover, Independent Set, Feedback Vertex Set, etc. In a first time, we introduce the notion of intersective approximability that generalizes the one of safe approximability and show strong parameterized inapproximability results for many of the subset problems handled. Then, we study approximability of these problems with respect to the dual parameter nkn-k where nn is the size of the instance and kk the standard parameter. More precisely, we show that under such a parameterization, many of these problems, while W[\cdot]-hard, admit parameterized approximation schemata.Comment: 7 page
    corecore