51 research outputs found

    An O(log log m) prophet inequality for subadditive combinatorial auctions

    Get PDF
    Prophet inequalities compare the expected performance of an online algorithm for a stochastic optimization problem to the expected optimal solution in hindsight. They are a major alternative to classic worst-case competitive analysis, of particular importance in the design and analysis of simple (posted-price) incentive compatible mechanisms with provable approximation guarantees. A central open problem in this area concerns subadditive combinatorial auctions. Here n agents with subadditive valuation functions compete for the assignment of m items. The goal is to find an allocation of the items that maximizes the total value of the assignment. The question is whether there exists a prophet inequality for this problem that significantly beats the best known approximation factor of O(log m). We make major progress on this question by providing an O(log log m) prophet inequality. Our proof goes through a novel primal-dual approach. It is also constructive, resulting in an online policy that takes the form of static and anonymous item prices that can be computed in polynomial time given appropriate query access to the valuations. As an application of our approach, we construct a simple and incentive compatible mechanism based on posted prices that achieves an O(log log m) approximation to the optimal revenue for subadditive valuations under an item-independence assumption

    Improved Prophet Inequalities for Combinatorial Welfare Maximization with (Approximately) Subadditive Agents

    Get PDF
    m-1} measures the maximum number of items that complement each other, and (3) as a byproduct, an O(1)-competitive prophet inequality for submodular or fractionally subadditive (a.k.a. XOS) agents, matching the optimal ratio asymptotically. Our framework is computationally efficient given sample access to the prior and demand queries

    Learning Multi-item Auctions with (or without) Samples

    Full text link
    We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item multi-bidder settings, for a wide range of valuations including unit-demand, additive, constrained additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly studied setting where sample access to the bidders' distributions over valuations is given, for both regular distributions and arbitrary distributions with bounded support. Our algorithms require polynomially many samples in the number of items and bidders. The second is a more general max-min learning setting that we introduce, where we are given "approximate distributions," and we seek to compute an auction whose revenue is approximately optimal simultaneously for all "true distributions" that are close to the given ones. These results are more general in that they imply the sample-based results, and are also applicable in settings where we have no sample access to the underlying distributions but have estimated them indirectly via market research or by observation of previously run, potentially non-truthful auctions. Our results hold for valuation distributions satisfying the standard (and necessary) independence-across-items property. They also generalize and improve upon recent works, which have provided algorithms that learn approximately optimal auctions in more restricted settings with additive, subadditive and unit-demand valuations using sample access to distributions. We generalize these results to the complete unit-demand, additive, and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting. Our results are enabled by new uniform convergence bounds for hypotheses classes under product measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by bounding the VC dimension, and are of independent interest.Comment: Appears in FOCS 201

    Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard

    Get PDF
    State-of-the-art posted-price mechanisms for submodular bidders with mm items achieve approximation guarantees of O((loglogm)3)O((\log \log m)^3) [Assadi and Singla, 2019]. Their truthfulness, however, requires bidders to compute an NP-hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard for truthful mechanisms to guarantee even an m1/2εm^{1/2-\varepsilon}-approximation for any ε>0\varepsilon > 0 [Dobzinski and Vondr\'ak, 2016]. Together, these establish a stark distinction between computationally-efficient and communication-efficient truthful mechanisms. We show that this distinction disappears with a mild relaxation of truthfulness, which we term implementation in advised strategies, and that has been previously studied in relation to "Implementation in Undominated Strategies" [Babaioff et al, 2009]. Specifically, advice maps a tentative strategy either to that same strategy itself, or one that dominates it. We say that a player follows advice as long as they never play actions which are dominated by advice. A poly-time mechanism guarantees an α\alpha-approximation in implementation in advised strategies if there exists poly-time advice for each player such that an α\alpha-approximation is achieved whenever all players follow advice. Using an appropriate bicriterion notion of approximate demand queries (which can be computed in poly-time), we establish that (a slight modification of) the [Assadi and Singla, 2019] mechanism achieves the same O((loglogm)3)O((\log \log m)^3)-approximation in implementation in advised strategies

    Combinatorial Auctions via Posted Prices

    Full text link
    We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in an arbitrary order, each purchasing her favorite bundle from among the unsold items at the posted prices. These mechanisms are simple, transparent and trivially dominant strategy incentive compatible (DSIC). We show that when agent preferences are fractionally subadditive (which includes all submodular functions), there always exist prices that, in expectation, obtain at least half of the optimal welfare. Our result is constructive: given black-box access to a combinatorial auction algorithm A, sample access to the prior distribution, and appropriate query access to the sampled valuations, one can compute, in polytime, prices that guarantee at least half of the expected welfare of A. As a corollary, we obtain the first polytime (in n and m) constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions, given access to demand query oracles. Our results also extend to valuations with complements, where the approximation factor degrades linearly with the level of complementarity

    Asymptotically Optimal Welfare of Posted Pricing for Multiple Items with MHR Distributions

    Get PDF
    We consider the problem of posting prices for unit-demand buyers if all nn buyers have identically distributed valuations drawn from a distribution with monotone hazard rate. We show that even with multiple items asymptotically optimal welfare can be guaranteed. Our main results apply to the case that either a buyer's value for different items are independent or that they are perfectly correlated. We give mechanisms using dynamic prices that obtain a 1Θ(1logn)1 - \Theta \left( \frac{1}{\log n}\right)-fraction of the optimal social welfare in expectation. Furthermore, we devise mechanisms that only use static item prices and are 1Θ(logloglognlogn)1 - \Theta \left( \frac{\log\log\log n}{\log n}\right)-competitive compared to the optimal social welfare. As we show, both guarantees are asymptotically optimal, even for a single item and exponential distributions.Comment: To appear at the 29th Annual European Symposium on Algorithms (ESA 2021

    Prophet Secretary for Combinatorial Auctions and Matroids

    Full text link
    The secretary and the prophet inequality problems are central to the field of Stopping Theory. Recently, there has been a lot of work in generalizing these models to multiple items because of their applications in mechanism design. The most important of these generalizations are to matroids and to combinatorial auctions (extends bipartite matching). Kleinberg-Weinberg \cite{KW-STOC12} and Feldman et al. \cite{feldman2015combinatorial} show that for adversarial arrival order of random variables the optimal prophet inequalities give a 1/21/2-approximation. For many settings, however, it's conceivable that the arrival order is chosen uniformly at random, akin to the secretary problem. For such a random arrival model, we improve upon the 1/21/2-approximation and obtain (11/e)(1-1/e)-approximation prophet inequalities for both matroids and combinatorial auctions. This also gives improvements to the results of Yan \cite{yan2011mechanism} and Esfandiari et al. \cite{esfandiari2015prophet} who worked in the special cases where we can fully control the arrival order or when there is only a single item. Our techniques are threshold based. We convert our discrete problem into a continuous setting and then give a generic template on how to dynamically adjust these thresholds to lower bound the expected total welfare.Comment: Preliminary version appeared in SODA 2018. This version improves the writeup on Fixed-Threshold algorithm

    Pricing for Online Resource Allocation: Intervals and Paths

    Full text link
    We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths. Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms. For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality

    A Bridge between Liquid and Social Welfare in Combinatorial Auctions with Submodular Bidders

    Full text link
    We study incentive compatible mechanisms for Combinatorial Auctions where the bidders have submodular (or XOS) valuations and are budget-constrained. Our objective is to maximize the \emph{liquid welfare}, a notion of efficiency for budget-constrained bidders introduced by Dobzinski and Paes Leme (2014). We show that some of the known truthful mechanisms that best-approximate the social welfare for Combinatorial Auctions with submodular bidders through demand query oracles can be adapted, so that they retain truthfulness and achieve asymptotically the same approximation guarantees for the liquid welfare. More specifically, for the problem of optimizing the liquid welfare in Combinatorial Auctions with submodular bidders, we obtain a universally truthful randomized O(logm)O(\log m)-approximate mechanism, where mm is the number of items, by adapting the mechanism of Krysta and V\"ocking (2012). Additionally, motivated by large market assumptions often used in mechanism design, we introduce a notion of competitive markets and show that in such markets, liquid welfare can be approximated within a constant factor by a randomized universally truthful mechanism. Finally, in the Bayesian setting, we obtain a truthful O(1)O(1)-approximate mechanism for the case where bidder valuations are generated as independent samples from a known distribution, by adapting the results of Feldman, Gravin and Lucier (2014).Comment: AAAI-1
    corecore