8,151 research outputs found

    An O(1) Solution to the Prefix Sum Problem on a Specialized Memory Architecture

    Get PDF
    In this paper we study the Prefix Sum problem introduced by Fredman. We show that it is possible to perform both update and retrieval in O(1) time simultaneously under a memory model in which individual bits may be shared by several words. We also show that two variants (generalizations) of the problem can be solved optimally in Θ(lgN)\Theta(\lg N) time under the comparison based model of computation.Comment: 12 page

    An O(1) solution to the prefix sum problem on a specialized memory architecture

    Get PDF
    In this paper we study the Prefix Sum problem introduced by Fredman. We show that it is possible to perform both update and retrieval in O(1) time simultaneously under a memory model in which individual bits may be shared by several words. We also show that two variants (generalizations) of the problem can be solved optimally in Θ (lgN) time under the comparison based model of computation.4th IFIP International Conference on Theoretical Computer ScienceRed de Universidades con Carreras en Informática (RedUNCI

    Gunrock: GPU Graph Analytics

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs, have presented two significant challenges to developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We characterize the performance of various optimization strategies and evaluate Gunrock's overall performance on different GPU architectures on a wide range of graph primitives that span from traversal-based algorithms and ranking algorithms, to triangle counting and bipartite-graph-based algorithms. The results show that on a single GPU, Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives and CPU shared-memory graph libraries such as Ligra and Galois, and better performance than any other GPU high-level graph library.Comment: 52 pages, invited paper to ACM Transactions on Parallel Computing (TOPC), an extended version of PPoPP'16 paper "Gunrock: A High-Performance Graph Processing Library on the GPU
    corecore