27 research outputs found

    Spanning trees of 3-uniform hypergraphs

    Full text link
    Masbaum and Vaintrob's "Pfaffian matrix tree theorem" implies that counting spanning trees of a 3-uniform hypergraph (abbreviated to 3-graph) can be done in polynomial time for a class of "3-Pfaffian" 3-graphs, comparable to and related to the class of Pfaffian graphs. We prove a complexity result for recognizing a 3-Pfaffian 3-graph and describe two large classes of 3-Pfaffian 3-graphs -- one of these is given by a forbidden subgraph characterization analogous to Little's for bipartite Pfaffian graphs, and the other consists of a class of partial Steiner triple systems for which the property of being 3-Pfaffian can be reduced to the property of an associated graph being Pfaffian. We exhibit an infinite set of partial Steiner triple systems that are not 3-Pfaffian, none of which can be reduced to any other by deletion or contraction of triples. We also find some necessary or sufficient conditions for the existence of a spanning tree of a 3-graph (much more succinct than can be obtained by the currently fastest polynomial-time algorithm of Gabow and Stallmann for finding a spanning tree) and a superexponential lower bound on the number of spanning trees of a Steiner triple system.Comment: 34 pages, 9 figure

    Matching

    Get PDF

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    29th International Symposium on Algorithms and Computation: ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan

    Get PDF

    Entanglement in Many-Body Systems

    Get PDF
    The recent interest in aspects common to quantum information and condensed matter has prompted a prosperous activity at the border of these disciplines that were far distant until few years ago. Numerous interesting questions have been addressed so far. Here we review an important part of this field, the properties of the entanglement in many-body systems. We discuss the zero and finite temperature properties of entanglement in interacting spin, fermionic and bosonic model systems. Both bipartite and multipartite entanglement will be considered. At equilibrium we emphasize on how entanglement is connected to the phase diagram of the underlying model. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium we discuss how to generate and manipulate entangled states by means of many-body Hamiltonians.Comment: 61 pages, 29 figure

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids

    Full text link
    In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.Comment: 37 pages, 27 figure

    Matchings, matroids and submodular functions

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 111-118).This thesis focuses on three fundamental problems in combinatorial optimization: non-bipartite matching, matroid intersection, and submodular function minimization. We develop simple, efficient, randomized algorithms for the first two problems, and prove new lower bounds for the last two problems. For the matching problem, we give an algorithm for constructing perfect or maximum cardinality matchings in non-bipartite graphs. Our algorithm requires O(n") time in graphs with n vertices, where w < 2.38 is the matrix multiplication exponent. This algorithm achieves the best-known running time for dense graphs, and it resolves an open question of Mucha and Sankowski (2004). For the matroid intersection problem, we give an algorithm for constructing a common base or maximum cardinality independent set for two so-called "linear" matroids. Our algorithm has running time O(nrw-1) for matroids with n elements and rank r. This is the best-known running time of any linear matroid intersection algorithm. We also consider lower bounds on the efficiency of matroid intersection algorithms, a question raised by Welsh (1976). Given two matroids of rank r on n elements, it is known that O(nr1.5) oracle queries suffice to solve matroid intersection. However, no non-trivial lower bounds are known. We make the first progress on this question. We describe a family of instances for which (log2 3)n - o(n) queries are necessary to solve these instances. This gives a constant factor improvement over the trivial lower bound for a certain range of parameters. Finally, we consider submodular functions, a generalization of matroids. We give three different proofs that [omega](n) queries are needed to find a minimizer of a submodular function, and prove that [omega](n2/ log n) queries are needed to find all minimizers.by Nicholas James Alexander Harvey.Ph.D
    corecore