12,892 research outputs found

    Bootstrapping opportunistic networks using social roles

    Get PDF
    Opportunistic routing protocols can enable message delivery in disconnected networks of mobile devices. To conserve energy in mobile environments, such routing protocols must minimise unnecessary message-forwarding. This paper presents an opportunistic routing protocol that leverages social role information. We compute node roles from a social network graph to identify nodes with similar contact relationships, and use these roles to determine routing decisions. By using pre-existing social network information, such as online social network friends, to determine roles, we show that our protocol can bootstrap a new opportunistic network without the delay incurred by encounter-history-based routing protocols such as SimbetTS. Simulations with four real-world datasets show improved performance over SimbetTS, with performance approaching Epidemic routing in some scenarios.Postprin

    Swarm-based Intelligent Routing (SIR) - a new approach for efficient routing in content centric delay tolerant networks

    Get PDF
    This paper introduces Swarm-based Intelligent Routing (SIR), a swarm intelligence based approach used for routing content in content centric Pocket Switched Networks. We first formalize the notion of optimal path in DTN, then introduce a swarm intelligence based routing protocol adapted to content centric DTN that use a publish/subscribe communication paradigm. The protocol works in a fully decentralized way in which nodes do not have any knowledge about the global topology. Nodes, via opportunistic contacts, update utility functions which synthesizes their spatio-temporal proximity from the content subscribers. This individual behavior applied by each node leads to the collective formation of gradient fields between content subscribers and content providers. Therefore, content routing simply sums up to follow the steepest slope along these gradient fields to reach subscribers who are located at the minima of the field. Via real traces analysis and simulation, we demonstrate the existence and relevance of such gradient field and show routing performance improvements when compared to classical routing protocols previously defined for information routing in DTN

    Total order in opportunistic networks

    Get PDF
    Opportunistic network applications are usually assumed to work only with unordered immutable messages, like photos, videos, or music files, while applications that depend on ordered or mutable messages, like chat or shared contents editing applications, are ignored. In this paper, we examine how total ordering can be achieved in an opportunistic network. By leveraging on existing dissemination and causal order algorithms, we propose a commutative replicated data type algorithm on the basis of Logoot for achieving total order without using tombstones in opportunistic networks where message delivery is not guaranteed by the routing layer. Our algorithm is designed to use the nature of the opportunistic network to reduce the metadata size compared to the original Logoot, and even to achieve in some cases higher hit rates compared to the dissemination algorithms when no order is enforced. Finally, we present the results of the experiments for the new algorithm by using an opportunistic network emulator, mobility traces, and Wikipedia pages.Peer ReviewedPostprint (author's final draft

    Pervasive intelligent routing in content centric delay tolerant networks

    Get PDF
    This paper introduces a Swarm-Intelligence based Routing protocol (SIR) that aims to efficiently route information in content centric Delay Tolerant Networks (CCDTN) also dubbed pocket switched networks. First, this paper formalizes the notion of optimal path in CCDTN and introduces an original and efficient algorithm to process these paths in dynamic graphs. The properties and some invariant features of these optimal paths are analyzed and derived from several real traces. Then, this paper shows how optimal path in CCDTN can be found and used from a fully distributed swarm-intelligence based approach of which the global intelligent behavior (i.e. shortest path discovery and use) emerges from simple peer to peer interactions applied during opportunistic contacts. This leads to the definition of the SIR routing protocol of which the consistency, efficiency and performances are demonstrated from intensive representative simulations
    corecore