723 research outputs found

    RTLabOS Dissemination Activities:RTLabOS D4.2

    Get PDF

    ICT Based HIL Validation of Voltage Control Coordination in Smart Grids Scenarios

    Get PDF
    This paper aims to validate the capability of renewable generation (ReGen) plants to provide online voltage control coordination ancillary service to the system operators in smart grids. Simulation studies about online coordination concepts from ReGen plants have already been identified in previous publications. However, here, the results are validated through a real-time Hardware-In-the-Loop framework using an exemplary benchmark grid area in Denmark as a base case that includes flexible renewable power plants providing voltage control functionality. The provision of voltage control support from ReGen plants is verified on a large-scale power system against the baseline scenario, considering the hierarchical industrial controller platforms used nowadays in power plants. Moreover, the verification of online voltage control support is carried out by taking into account a communication network as well as the associated data traffic patterns obtained from a real network. Based on the sets of recordings, guidelines and recommendations for practical implementation of the developed control algorithms for targeted ancillary service are made. This provides a deep insight for stakeholders, i.e., wind turbine and photo-voltaic system manufacturers and system operators, regarding the existing boundaries for current technologies and requirements for accommodating the new ancillary services in industrial application

    Towards a Versatile Cyber Physical Power System Testbed: Design and Operation Experience

    Get PDF
    The present trends in the area of smartgrids indicate that future transmission and distribution systems will heavily rely on digital and on communication technologies to operate. Indeed, the power systems are evolving progressively towards what is denoted as a cyber-physical system. This transition challenges the classical approaches for experimental testing and requires the development of testing platforms for cyber-physical systems able to capture the interactions between physical components, control and monitoring software and the communication infrastructure. This paper presents general considerations and requirements for a cyber-physical testing platform for power systems. The paper provides also examples of a testing platform specifying the characteristics of the major components and a summary of the experience matured in its setup and configuration. Finally, an example of an experiment on a notional smartgrid and the related results are reported.acceptedVersio

    Design of Large Scale Virtual Equipment for Interactive HIL Control System Labs

    Get PDF
    • …
    corecore