120 research outputs found

    Bridging the Gap between Application and Solid-State-Drives

    Get PDF
    Data storage is one of the important and often critical parts of the computing system in terms of performance, cost, reliability, and energy. Numerous new memory technologies, such as NAND flash, phase change memory (PCM), magnetic RAM (STT-RAM) and Memristor, have emerged recently. Many of them have already entered the production system. Traditional storage optimization and caching algorithms are far from optimal because storage I/Os do not show simple locality. To provide optimal storage we need accurate predictions of I/O behavior. However, the workloads are increasingly dynamic and diverse, making the long and short time I/O prediction challenge. Because of the evolution of the storage technologies and the increasing diversity of workloads, the storage software is becoming more and more complex. For example, Flash Translation Layer (FTL) is added for NAND-flash based Solid State Disks (NAND-SSDs). However, it introduces overhead such as address translation delay and garbage collection costs. There are many recent studies aim to address the overhead. Unfortunately, there is no one-size-fits-all solution due to the variety of workloads. Despite rapidly evolving in storage technologies, the increasing heterogeneity and diversity in machines and workloads coupled with the continued data explosion exacerbate the gap between computing and storage speeds. In this dissertation, we improve the data storage performance from both top-down and bottom-up approach. First, we will investigate exposing the storage level parallelism so that applications can avoid I/O contentions and workloads skew when scheduling the jobs. Second, we will study how architecture aware task scheduling can improve the performance of the application when PCM based NVRAM are equipped. Third, we will develop an I/O correlation aware flash translation layer for NAND-flash based Solid State Disks. Fourth, we will build a DRAM-based correlation aware FTL emulator and study the performance in various filesystems

    Data-intensive Systems on Modern Hardware : Leveraging Near-Data Processing to Counter the Growth of Data

    Get PDF
    Over the last decades, a tremendous change toward using information technology in almost every daily routine of our lives can be perceived in our society, entailing an incredible growth of data collected day-by-day on Web, IoT, and AI applications. At the same time, magneto-mechanical HDDs are being replaced by semiconductor storage such as SSDs, equipped with modern Non-Volatile Memories, like Flash, which yield significantly faster access latencies and higher levels of parallelism. Likewise, the execution speed of processing units increased considerably as nowadays server architectures comprise up to multiple hundreds of independently working CPU cores along with a variety of specialized computing co-processors such as GPUs or FPGAs. However, the burden of moving the continuously growing data to the best fitting processing unit is inherently linked to today’s computer architecture that is based on the data-to-code paradigm. In the light of Amdahl's Law, this leads to the conclusion that even with today's powerful processing units, the speedup of systems is limited since the fraction of parallel work is largely I/O-bound. Therefore, throughout this cumulative dissertation, we investigate the paradigm shift toward code-to-data, formally known as Near-Data Processing (NDP), which relieves the contention on the I/O bus by offloading processing to intelligent computational storage devices, where the data is originally located. Firstly, we identified Native Storage Management as the essential foundation for NDP due to its direct control of physical storage management within the database. Upon this, the interface is extended to propagate address mapping information and to invoke NDP functionality on the storage device. As the former can become very large, we introduce Physical Page Pointers as one novel NDP abstraction for self-contained immutable database objects. Secondly, the on-device navigation and interpretation of data are elaborated. Therefore, we introduce cross-layer Parsers and Accessors as another NDP abstraction that can be executed on the heterogeneous processing capabilities of modern computational storage devices. Thereby, the compute placement and resource configuration per NDP request is identified as a major performance criteria. Our experimental evaluation shows an improvement in the execution durations of 1.4x to 2.7x compared to traditional systems. Moreover, we propose a framework for the automatic generation of Parsers and Accessors on FPGAs to ease their application in NDP. Thirdly, we investigate the interplay of NDP and modern workload characteristics like HTAP. Therefore, we present different offloading models and focus on an intervention-free execution. By propagating the Shared State with the latest modifications of the database to the computational storage device, it is able to process data with transactional guarantees. Thus, we achieve to extend the design space of HTAP with NDP by providing a solution that optimizes for performance isolation, data freshness, and the reduction of data transfers. In contrast to traditional systems, we experience no significant drop in performance when an OLAP query is invoked but a steady and 30% faster throughput. Lastly, in-situ result-set management and consumption as well as NDP pipelines are proposed to achieve flexibility in processing data on heterogeneous hardware. As those produce final and intermediary results, we continue investigating their management and identified that an on-device materialization comes at a low cost but enables novel consumption modes and reuse semantics. Thereby, we achieve significant performance improvements of up to 400x by reusing once materialized results multiple times

    Selective caching: a persistent memory approach for multi-dimensional index structures

    Get PDF
    After the introduction of Persistent Memory in the form of Intel’s Optane DC Persistent Memory on the market in 2019, it has found its way into manifold applications and systems. As Google and other cloud infrastructure providers are starting to incorporate Persistent Memory into their portfolio, it is only logical that cloud applications have to exploit its inherent properties. Persistent Memory can serve as a DRAM substitute, but guarantees persistence at the cost of compromised read/write performance compared to standard DRAM. These properties particularly affect the performance of index structures, since they are subject to frequent updates and queries. However, adapting each and every index structure to exploit the properties of Persistent Memory is tedious. Hence, we require a general technique that hides this access gap, e.g., by using DRAM caching strategies. To exploit Persistent Memory properties for analytical index structures, we propose selective caching. It is based on a mixture of dynamic and static caching of tree nodes in DRAM to reach near-DRAM access speeds for index structures. In this paper, we evaluate selective caching on the OLAP-optimized main-memory index structure Elf, because its memory layout allows for an easy caching. Our experiments show that if configured well, selective caching with a suitable replacement strategy can keep pace with pure DRAM storage of Elf while guaranteeing persistence. These results are also reflected when selective caching is used for parallel workloads

    Leveraging disaggregated accelerators and non-volatile memories to improve the efficiency of modern datacenters

    Get PDF
    (English) Traditional data centers consist of computing nodes that possess all the resources physically attached. When there was the need to deal with more significant demands, the solution has been to either add more nodes (scaling out) or increase the capacity of existing ones (scaling-up). Workload requirements are traditionally fulfilled by selecting compute platforms from pools that better satisfy their average or maximum resource requirements depending on the price that the user is willing to pay. The amount of processor, memory, storage, and network bandwidth of a selected platform needs to meet or exceed the platform requirements of the workload. Beyond those explicitly required by the workload, additional resources are considered stranded resources (if not used) or bonus resources (if used). Meanwhile, workloads in all market segments have evolved significantly during the last decades. Today, workloads have a larger variety of requirements in terms of characteristics related to the computing platforms. Those workload new requirements include new technologies such as GPU, FPGA, NVMe, etc. These new technologies are more expensive and thus become more limited. It is no longer feasible to increase the number of resources according to potential peak demands, as this significantly raises the total cost of ownership. Software-Defined-Infrastructures (SDI), a new concept for the data center architecture, is being developed to address those issues. The main SDI proposition is to disaggregate all the resources over the fabric to enable the required flexibility. On SDI, instead of pools of computational nodes, the pools consist of individual units of resources (CPU, memory, FPGA, NVMe, GPU, etc.). When an application needs to be executed, SDI identifies the computational requirements and assembles all the resources required, creating a composite node. Resource disaggregation brings new challenges and opportunities that this thesis will explore. This thesis demonstrates that resource disaggregation brings opportunities to increase the efficiency of modern data centers. This thesis demonstrates that resource disaggregation may increase workloads' performance when sharing a single resource. Thus, needing fewer resources to achieve similar results. On the other hand, this thesis demonstrates how through disaggregation, aggregation of resources can be made, increasing a workload's performance. However, to take maximum advantage of those characteristics and flexibility, orchestrators must be aware of them. This thesis demonstrates how workload-aware techniques applied at the resource management level allow for improved quality of service leveraging resource disaggregation. Enabling resource disaggregation, this thesis demonstrates a reduction of up to 49% missed deadlines compared to a traditional schema. This reduction can rise up to 100% when enabling workload awareness. Moreover, this thesis demonstrates that GPU partitioning and disaggregation further enhances the data center flexibility. This increased flexibility can achieve the same results with half the resources. That is, with a single physical GPU partitioned and disaggregated, the same results can be achieved with 2 GPU disaggregated but not partitioned. Finally, this thesis demonstrates that resource fragmentation becomes key when having a limited set of heterogeneous resources, namely NVMe and GPU. For the case of an heterogeneous set of resources, and specifically when some of those resources are highly demanded but limited in quantity. That is, the situation where the demand for a resource is unexpectedly high, this thesis proposes a technique to minimize fragmentation that reduces deadlines missed compared to a disaggregation-aware policy of up to 86%.(Català) Els datacenters tradicionals consisteixen en un seguit de nodes computacionals que contenen al seu interior tots els recursos necessaris. Quan hi ha una necessitat de gestionar demandes superiors la solució era o afegir més nodes (scale-out) o incrementar la capacitat dels existents (scale-up). Els requisits de les aplicacions tradicionalment són satisfets seleccionant recursos de racks que satisfan millor el seu SLA basats o en la mitjana dels requisits o en el màxim possible, en funció del preu que l'usuari estigui disposat a pagar. La quantitat de processadors, memòria, disc, i banda d'ampla d'un rack necessita satisfer o excedir els requisits de l'aplicació. Els recursos addicionals als requerits per les aplicacions són considerats inactius (si no es fan servir) o addicionals (si es fan servir). Per altra banda, les aplicacions en tots els segments de mercat han evolucionat significativament en les últimes dècades. Avui en dia, les aplicacions tenen una gran varietat de requisits en termes de característiques que ha de tenir la infraestructura. Aquests nous requisits inclouen tecnologies com GPU, FPGA, NVMe, etc. Aquestes tecnologies són més cares i, per tant, més limitades. Ja no és factible incrementar el nombre de recursos segons el potencial pic de demanda, ja que això incrementa significativament el cost total de la infraestructura. Software-Defined Infrastructures és un nou concepte per a l'arquitectura de datacenters que s'està desenvolupant per pal·liar aquests problemes. La proposició principal de SDI és desagregar tots els recursos sobre la xarxa per garantir una major flexibilitat. Sota SDI, en comptes de racks de nodes computacionals, els racks consisteix en unitats individuals de recursos (CPU, memòria, FPGA, NVMe, GPU, etc). Quan una aplicació necessita executar, SDI identifica els requisits computacionals i munta una plataforma amb tots els recursos necessaris, creant un node composat. La desagregació de recursos porta nous reptes i oportunitats que s'exploren en aquesta tesi. Aquesta tesi demostra que la desagregació de recursos ens dona l'oportunitat d'incrementar l'eficiència dels datacenters moderns. Aquesta tesi demostra la desagregació pot incrementar el rendiment de les aplicacions. Però per treure el màxim partit a aquestes característiques i d'aquesta flexibilitat, els orquestradors n'han de ser conscient. Aquesta tesi demostra que aplicant tècniques conscients de l'aplicació aplicades a la gestió de recursos permeten millorar la qualitat del servei a través de la desagregació de recursos. Habilitar la desagregació de recursos porta a una reducció de fins al 49% els deadlines perduts comparat a una política tradicional. Aquesta reducció pot incrementar-se fins al 100% quan s'habilita la consciència de l'aplicació. A més a més, aquesta tesi demostra que el particionat de GPU combinat amb la desagregació millora encara més la flexibilitat. Aquesta millora permet aconseguir els mateixos resultats amb la meitat de recursos. És a dir, amb una sola GPU física particionada i desagregada, els mateixos resultats són obtinguts que utilitzant-ne dues desagregades però no particionades. Finalment, aquesta tesi demostra que la gestió de la fragmentació de recursos és una peça clau quan la quantitat de recursos és limitada en un conjunt heterogeni de recursos. Pel cas d'un conjunt heterogeni de recursos, i especialment quan aquests recursos tenen molta demanda però són limitats en quantitat. És a dir, quan la demanda pels recursos és inesperadament alta, aquesta tesi proposa una tècnica minimitzant la fragmentació que redueix els deadlines perduts comparats a una política de desagregació de fins al 86%.Arquitectura de computador
    corecore