113 research outputs found

    Supply Chain Tracing and Anti-Counterfeiting with Distributed Ledger Technology

    Get PDF
    In recent times, there has been a rampant proliferation of counterfeit products that has left a trail of devastation in the manufacturing sectors. The repercussions of this extend to companies, impacting their brand reputation, revenue streams and overall profitability. Industries like agriculture, banking, electronics, and high-value deliveries uses the emergence of blockchain technology as a powerful tool to discern between authentic and counterfeit items. Its potential as a means to curtail the influx of fake products in the market is substantial. Blockchain technology, at its core, operates as a decentralized and distributed digital ledger system, meticulously recording transactions within interconnected blocks across multiple databases. The inherent security of this technology ensures the immutability of these blocks, rendering them invulnerable to alteration or hacking. By leveraging blockchain technology, consumers can independently verify the authenticity of a product, eliminating the need for reliance on third-party intermediaries. Incorporating recent technological advancements, the utilization of Quick Response (QR) codes offers a robust approach to combat the proliferation of counterfeit goods. The integration of blockchain technology with QR codes serves as a means to uphold the integrity of products. This innovative system securely stores product details and unique codes in the form of blocks,  where QR codes play a pivotal role in collecting and matching these unique codes with entries in the blockchain database. If the QR code matches with entries in the database, the user receives a confirmation of the product's authenticity; otherwise, an alert is triggered, signaling the presence of a counterfeit product

    Fashion Industry

    Get PDF
    Fashion is a lot more than providing an answer to primary needs. It is a way of communication, of distinction, of proclaiming a unique taste and expressing the belonging to a group. Sometimes to an exclusive group. Currently, the fashion industry is moving towards hyperspace, to a multidimensional world that is springing from the integration of smart textiles and wearable technologies. It is far beyond aesthetics. New properties of smart textiles let designers experiment with astonishing forms and expressions. There are also surprising contrasts and challenges: a new life for natural fibers, sustainable fabrics and dyeing techniques, rediscovered by eco-fashion, and "artificial apparel," made of wearable electronic components. How is this revolution affecting the strategies of the fashion industry

    Decentralized Identity and Access Management Framework for Internet of Things Devices

    Get PDF
    The emerging Internet of Things (IoT) domain is about connecting people and devices and systems together via sensors and actuators, to collect meaningful information from the devices surrounding environment and take actions to enhance productivity and efficiency. The proliferation of IoT devices from around few billion devices today to over 25 billion in the next few years spanning over heterogeneous networks defines a new paradigm shift for many industrial and smart connectivity applications. The existing IoT networks faces a number of operational challenges linked to devices management and the capability of devices’ mutual authentication and authorization. While significant progress has been made in adopting existing connectivity and management frameworks, most of these frameworks are designed to work for unconstrained devices connected in centralized networks. On the other hand, IoT devices are constrained devices with tendency to work and operate in decentralized and peer-to-peer arrangement. This tendency towards peer-to-peer service exchange resulted that many of the existing frameworks fails to address the main challenges faced by the need to offer ownership of devices and the generated data to the actual users. Moreover, the diversified list of devices and offered services impose that more granular access control mechanisms are required to limit the exposure of the devices to external threats and provide finer access control policies under control of the device owner without the need for a middleman. This work addresses these challenges by utilizing the concepts of decentralization introduced in Distributed Ledger (DLT) technologies and capability of automating business flows through smart contracts. The proposed work utilizes the concepts of decentralized identifiers (DIDs) for establishing a decentralized devices identity management framework and exploits Blockchain tokenization through both fungible and non-fungible tokens (NFTs) to build a self-controlled and self-contained access control policy based on capability-based access control model (CapBAC). The defined framework provides a layered approach that builds on identity management as the foundation to enable authentication and authorization processes and establish a mechanism for accounting through the adoption of standardized DLT tokenization structure. The proposed framework is demonstrated through implementing a number of use cases that addresses issues related identity management in industries that suffer losses in billions of dollars due to counterfeiting and lack of global and immutable identity records. The framework extension to support applications for building verifiable data paths in the application layer were addressed through two simple examples. The system has been analyzed in the case of issuing authorization tokens where it is expected that DLT consensus mechanisms will introduce major performance hurdles. A proof of concept emulating establishing concurrent connections to a single device presented no timed-out requests at 200 concurrent connections and a rise in the timed-out requests ratio to 5% at 600 connections. The analysis showed also that a considerable overhead in the data link budget of 10.4% is recorded due to the use of self-contained policy token which is a trade-off between building self-contained access tokens with no middleman and link cost

    An end-to-end bidirectional authentication system for pallet pooling management through blockchain internet of things (BIoT)

    Get PDF
    Pallet pooling is regarded as a sustainable and cost-effective measure for the industry, but it is challenging to advocate due to weak data and pallet authentication. In order to establish trust between end-users and pallet pooling services, the authors propose an end-to-end, bidirectional authentication system for transmitted data and pallets based on blockchain and internet-of-things (IoT) technologies. In addition, secure data authentication fosters the pallet authenticity in the whole supply chain network, which is achieved by considering the tag, location, and object-specific features. To evaluate the object-specific features, the scale invariant feature transform (SIFT) approach is adopted to match key-points and descriptors between two pallet images. According to the case study, it is found that the proposed system provides a low bandwidth blocking rate and a high probability of restoring complete data payloads. Consequently, positive influences on end-user satisfaction, quality of service, operational errors, and pallet traceability are achieved through the deployment of the proposed system

    An Empirical Analysis to Control Product Counterfeiting in the Automotive Industry\u27s Supply Chains in Pakistan

    Get PDF
    The counterfeits pose significant health and safety threat to consumers. The quality image of firms is vulnerable to the damage caused by the expanding flow of counterfeit products in today’s global supply chains. The counterfeiting markets are swelling due to globalization and customers’ willingness to buy counterfeits, fueling illicit activities to explode further. Buyers look for the original parts are deceived by the false (deceptive) signals’ communication. The counterfeiting market has become a multi-billion industry but lacks detailed insights into the supply side of counterfeiting (deceptive side). The study aims to investigate and assess the relationship between the anti-counterfeiting strategies and improvement in the firm’s supply performance within the internal and external supply chain quality management context in the auto-parts industry’s supply chains in Pakistan

    Trusted and Privacy-preserving Embedded Systems: Advances in Design, Analysis and Application of Lightweight Privacy-preserving Authentication and Physical Security Primitives

    Get PDF
    Radio Frequency Identification (RFID) enables RFID readers to perform fully automatic wireless identification of objects labeled with RFID tags and is widely deployed to many applications, such as access control, electronic tickets and payment as well as electronic passports. This prevalence of RFID technology introduces various risks, in particular concerning the privacy of its users and holders. Despite the privacy risk, classical threats to authentication and identification systems must be considered to prevent the adversary from impersonating or copying (cloning) a tag. This thesis summarizes the state of the art in secure and privacy-preserving authentication for RFID tags with a particular focus on solutions based on Physically Unclonable Functions (PUFs). It presents advancements in the design, analysis and evaluation of secure and privacy-preserving authentication protocols for RFID systems and PUFs. Formalizing the security and privacy requirements on RFID systems is essential for the design of provably secure and privacy-preserving RFID protocols. However, existing RFID security and privacy models in the literature are often incomparable and in part do not reflect the capabilities of real-world adversaries. We investigate subtle issues such as tag corruption aspects that lead to the impossibility of achieving both mutual authentication and any reasonable notion of privacy in one of the most comprehensive security and privacy models, which is the basis of many subsequent works. Our results led to the refinement of this privacy model and were considered in subsequent works on privacy-preserving RFID systems. A promising approach to enhance the privacy in RFID systems without lifting the computational requirements on the tags are anonymizers. These are special devices that take off the computational workload from the tags. While existing anonymizer-based protocols are subject to impersonation and denial-of-service attacks, existing RFID security and privacy models do not include anonymizers. We present the first security and privacy framework for anonymizer-enabled RFID systems and two privacy-preserving RFID authentication schemes using anonymizers. Both schemes achieve several appealing features that were not simultaneously achieved by any previous proposal. The first protocol is very efficient for all involved entities, achieves privacy under tag corruption. It is secure against impersonation attacks and forgeries even if the adversary can corrupt the anonymizers. The second scheme provides for the first time anonymity and untraceability of tags against readers as well as secure tag authentication against collisions of malicious readers and anonymizers using tags that cannot perform public-key cryptography (i.e., modular exponentiations). The RFID tags commonly used in practice are cost-efficient tokens without expensive hardware protection mechanisms. Physically Unclonable Functions (PUFs) promise to provide an effective security mechanism for RFID tags to protect against basic hardware attacks. However, existing PUF-based RFID authentication schemes are not scalable, allow only for a limited number of authentications and are subject to replay, denial-of-service and emulation attacks. We present two scalable PUF-based authentication schemes that overcome these problems. The first protocol supports tag and reader authentication, is resistant to emulation attacks and highly scalable. The second protocol uses a PUF-based key storage and addresses an open question on the feasibility of destructive privacy, i.e., the privacy of tags that are destroyed during tag corruption. The security of PUFs relies on assumptions on physical properties and is still under investigation. PUF evaluation results in the literature are difficult to compare due to varying test conditions and different analysis methods. We present the first large-scale security analysis of ASIC implementations of the five most popular electronic PUF types, including Arbiter, Ring Oscillator, SRAM, Flip-Flop and Latch PUFs. We present a new PUF evaluation methodology that allows a more precise assessment of the unpredictability properties than previous approaches and we quantify the most important properties of PUFs for their use in cryptographic schemes. PUFs have been proposed for various applications, including anti-counterfeiting and authentication schemes. However, only rudimentary PUF security models exist, limiting the confidence in the security claims of PUF-based security mechanisms. We present a formal security framework for PUF-based primitives, which has been used in subsequent works to capture the properties of image-based PUFs and in the design of anti-counterfeiting mechanisms and physical hash functions
    • …
    corecore