225 research outputs found

    Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach

    Full text link
    [EN] Increasing waste generation has become a significant issue over the globe due to the rapid increase in urbanization and industrialization. In the literature, many issues that have a direct impact on the increase of waste and the improper disposal of waste have been investigated. Most of the existing work in the literature has focused on providing a cost-efficient solution for the monitoring of garbage collection system using the Internet of Things (IoT). Though an IoT-based solution provides the real-time monitoring of a garbage collection system, it is limited to control the spreading of overspill and bad odor blowout gasses. The poor and inadequate disposal of waste produces toxic gases, and radiation in the environment has adverse effects on human health, the greenhouse system, and global warming. While considering the importance of air pollutants, it is imperative to monitor and forecast the concentration of air pollutants in addition to the management of the waste. In this paper, we present and IoT-based smart bin using a machine and deep learning model to manage the disposal of garbage and to forecast the air pollutant present in the surrounding bin environment. The smart bin is connected to an IoT-based server, the Google Cloud Server (GCP), which performs the computation necessary for predicting the status of the bin and for forecasting air quality based on real-time data. We experimented with a traditional model (k-nearest neighbors algorithm (k-NN) and logistic reg) and a non-traditional (long short term memory (LSTM) network-based deep learning) algorithm for the creation of alert messages regarding bin status and forecasting the amount of air pollutant carbon monoxide (CO) present in the air at a specific instance. The recalls of logistic regression and k-NN algorithm is 79% and 83%, respectively, in a real-time testing environment for predicting the status of the bin. The accuracy of modified LSTM and simple LSTM models is 90% and 88%, respectively, to predict the future concentration of gases present in the air. The system resulted in a delay of 4 s in the creation and transmission of the alert message to a sanitary worker. The system provided the real-time monitoring of garbage levels along with notifications from the alert mechanism. The proposed works provide improved accuracy by utilizing machine learning as compared to existing solutions based on simple approaches.This research work was funded by the Ministry of Education and the Deanship of Scientific Research, Najran University. Kingdom of Saudi Arabia, under code number NU/ESCI/19/001.Hussain, A.; Draz, U.; Ali, T.; Tariq, S.; Glowacz, A.; Irfan, M.; Antonino Daviu, JA.... (2020). Waste Management and Prediction of Air Pollutants Using IoT and Machine Learning Approach. Energies. 13(15):1-22. https://doi.org/10.3390/en13153930S1221315Lionetto, M. G., Guascito, M. R., Caricato, R., Giordano, M. E., De Bartolomeo, A. R., Romano, M. P., … Contini, D. (2019). Correlation of Oxidative Potential with Ecotoxicological and Cytotoxicological Potential of PM10 at an Urban Background Site in Italy. Atmosphere, 10(12), 733. doi:10.3390/atmos10120733Wiedinmyer, C., Yokelson, R. J., & Gullett, B. K. (2014). Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste. Environmental Science & Technology, 48(16), 9523-9530. doi:10.1021/es502250zYan, F., Zhu, F., Wang, Q., & Xiong, Y. (2016). Preliminary Study of PM2.5 Formation During Municipal Solid Waste Incineration. Procedia Environmental Sciences, 31, 475-481. doi:10.1016/j.proenv.2016.02.054Curtis, L., Rea, W., Smith-Willis, P., Fenyves, E., & Pan, Y. (2006). Adverse health effects of outdoor air pollutants. Environment International, 32(6), 815-830. doi:10.1016/j.envint.2006.03.012Gollakota, A. R. K., Gautam, S., & Shu, C.-M. (2020). Inconsistencies of e-waste management in developing nations – Facts and plausible solutions. Journal of Environmental Management, 261, 110234. doi:10.1016/j.jenvman.2020.110234Anitha, A. (2017). Garbage monitoring system using IoT. IOP Conference Series: Materials Science and Engineering, 263, 042027. doi:10.1088/1757-899x/263/4/042027Sirsikar, S., & Karemore, P. (2015). Review Paper on Air Pollution Monitoring system. IJARCCE, 218-220. doi:10.17148/ijarcce.2015.4147Tavares Neto, R. F., & Godinho Filho, M. (2013). Literature review regarding Ant Colony Optimization applied to scheduling problems: Guidelines for implementation and directions for future research. Engineering Applications of Artificial Intelligence, 26(1), 150-161. doi:10.1016/j.engappai.2012.03.011Ali, T., Irfan, M., Alwadie, A. S., & Glowacz, A. (2020). IoT-Based Smart Waste Bin Monitoring and Municipal Solid Waste Management System for Smart Cities. Arabian Journal for Science and Engineering, 45(12), 10185-10198. doi:10.1007/s13369-020-04637-wSilva, B. N., Khan, M., & Han, K. (2018). Towards sustainable smart cities: A review of trends, architectures, components, and open challenges in smart cities. Sustainable Cities and Society, 38, 697-713. doi:10.1016/j.scs.2018.01.053Gutierrez, J. M., Jensen, M., Henius, M., & Riaz, T. (2015). Smart Waste Collection System Based on Location Intelligence. Procedia Computer Science, 61, 120-127. doi:10.1016/j.procs.2015.09.170Carbon Monoxide Dangers in the Boiler Room www.pmmag.com/articles/97528-carbonmonoxide-danger-in-the-boiler-roomDe Vito, S., Massera, E., Piga, M., Martinotto, L., & Di Francia, G. (2008). On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sensors and Actuators B: Chemical, 129(2), 750-757. doi:10.1016/j.snb.2007.09.060Guiry, J., van de Ven, P., & Nelson, J. (2014). Multi-Sensor Fusion for Enhanced Contextual Awareness of Everyday Activities with Ubiquitous Devices. Sensors, 14(3), 5687-5701. doi:10.3390/s140305687Ali, T., Draz, U., Yasin, S., Noureen, J., shaf, A., & Zardari, M. (2018). An Efficient Participant’s Selection Algorithm for Crowdsensing. International Journal of Advanced Computer Science and Applications, 9(1). doi:10.14569/ijacsa.2018.090154Ali, T., Noureen, J., Draz, U., Shaf, A., Yasin, S., & Ayaz, M. (2018). Participants Ranking Algorithm for Crowdsensing in Mobile Communication. ICST Transactions on Scalable Information Systems, 5(16), 154476. doi:10.4108/eai.13-4-2018.15447

    The world of IoT

    Get PDF
    This book describes the world of Internet of things (IoT). Main technologies involved in the use of IoT are introduced. Moreover, IoT devices and platforms are also described in this module. Finally, a list of real IoT applications is shown for several typical IoT fields.Peer ReviewedPostprint (published version

    A Performance Analysis of General Packet Radio Service (GPRS) and Narrowband Internet of Things (NB-IoT) in Indonesia

    Get PDF
    Internet of Things (IoT) refers to a concept connecting any devices onto the internet. The IoT devices cannot only use a service or server to be controlled at a distance but also to do computation. IoT has been applied in many fields, such as smart cities, industries, and logistics. The sending of IoT data can use the existing GSM networks such as GPRS. However, GPRS is not dedicated particularly to the transmission of IoT data in consideration of its weaknesses in terms of coverage and power efficiency. To increase the performance of the transmission of IoT data, Narrowband-IoT (NB-IoT), one alternative to replace GPRS, is offered for its excellence in coverage and power. This paper aims to compare the GPRS and NB-IoT technology for the transmission of IoT data, specifically in Bandung region, Indonesia. The results obtained showed that the packet loss from clients for the GPRS network was at 68%, while the one for NB-IoT was at 44%. Moreover, NB-IoT technology was found excellent in terms of battery saving compared to GPRS for the transmission of IoT data. This result showed that NB-IoT was found more suitable for transmitting the IoT data compared to GPRS

    FUZZY LOGIC CONTROLLER FOR CAPACITY MONITORING ON TRASH CAN BASED ON HEIGHT AND WEIGHT USING ULTRASONIC AND HX711 SENSOR

    Get PDF
    Until now, waste management in an environment has not been evenly distributed in various countries. In fact, poor waste management can lead to negative things such as the emergence of several diseases. Therefore the automatic opening feature and monitoring system is a good thing to complete a trash can. Weight sensors and ultrasonic sensors can assist performance in part monitoring. The pear sensor will assist in detecting human movement, then closing the trash can will be moved with the help of a servo. A monitoring system with the help of fuzzy logic to determine the value of the obscurity will help in this regard. These main features will certainly help in improving waste management in an environment

    Iot-enabled smart cities: evolution and outlook

    Get PDF
    For the last decade the Smart City concept has been under development, fostered by the growing urbanization of the world’s population and the need to handle the challenges that such a scenario raises. During this time many Smart City projects have been executed–some as proof-of-concept, but a growing number resulting in permanent, production-level deployments, improving the operation of the city and the quality of life of its citizens. Thus, Smart Cities are still a highly relevant paradigm which needs further development before it reaches its full potential and provides robust and resilient solutions. In this paper, the focus is set on the Internet of Things (IoT) as an enabling technology for the Smart City. In this sense, the paper reviews the current landscape of IoT-enabled Smart Cities, surveying relevant experiences and city initiatives that have embedded IoT within their city services and how they have generated an impact. The paper discusses the key technologies that have been developed and how they are contributing to the realization of the Smart City. Moreover, it presents some challenges that remain open ahead of us and which are the initiatives and technologies that are under development to tackle them.This research was partially funded by Spain State Research Agency (AEI) by means of the project FIERCE: Future Internet Enabled Resilient CitiEs (RTI2018-093475-A-I00). Prof. Song was supported by Smart City R&D project of the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (MOLIT), Ministry of Science and ICT (MSIT) (Grant 18NSPS-B149386-01)

    IoT in smart communities, technologies and applications.

    Get PDF
    Internet of Things is a system that integrates different devices and technologies, removing the necessity of human intervention. This enables the capacity of having smart (or smarter) cities around the world. By hosting different technologies and allowing interactions between them, the internet of things has spearheaded the development of smart city systems for sustainable living, increased comfort and productivity for citizens. The Internet of Things (IoT) for Smart Cities has many different domains and draws upon various underlying systems for its operation, in this work, we provide a holistic coverage of the Internet of Things in Smart Cities by discussing the fundamental components that make up the IoT Smart City landscape, the technologies that enable these domains to exist, the most prevalent practices and techniques which are used in these domains as well as the challenges that deployment of IoT systems for smart cities encounter and which need to be addressed for ubiquitous use of smart city applications. It also presents a coverage of optimization methods and applications from a smart city perspective enabled by the Internet of Things. Towards this end, a mapping is provided for the most encountered applications of computational optimization within IoT smart cities for five popular optimization methods, ant colony optimization, genetic algorithm, particle swarm optimization, artificial bee colony optimization and differential evolution. For each application identified, the algorithms used, objectives considered, the nature of the formulation and constraints taken in to account have been specified and discussed. Lastly, the data setup used by each covered work is also mentioned and directions for future work have been identified. Within the smart health domain of IoT smart cities, human activity recognition has been a key study topic in the development of cyber physical systems and assisted living applications. In particular, inertial sensor based systems have become increasingly popular because they do not restrict users’ movement and are also relatively simple to implement compared to other approaches. Fall detection is one of the most important tasks in human activity recognition. With an increasingly aging world population and an inclination by the elderly to live alone, the need to incorporate dependable fall detection schemes in smart devices such as phones, watches has gained momentum. Therefore, differentiating between falls and activities of daily living (ADLs) has been the focus of researchers in recent years with very good results. However, one aspect within fall detection that has not been investigated much is direction and severity aware fall detection. Since a fall detection system aims to detect falls in people and notify medical personnel, it could be of added value to health professionals tending to a patient suffering from a fall to know the nature of the accident. In this regard, as a case study for smart health, four different experiments have been conducted for the task of fall detection with direction and severity consideration on two publicly available datasets. These four experiments not only tackle the problem on an increasingly complicated level (the first one considers a fall only scenario and the other two a combined activity of daily living and fall scenario) but also present methodologies which outperform the state of the art techniques as discussed. Lastly, future recommendations have also been provided for researchers

    Prioritized and predictive intelligence of things enabled waste management model in smart and sustainable environment

    Get PDF
    Collaborative modelling of the Internet of Things (IoT) with Artificial Intelligence (AI) has merged into the Intelligence of Things concept. This recent trend enables sensors to track required parameters and store accumulated data in cloud storage, which can be further utilized by AI based predictive models for automatic decision making. In a smart and sustainable environment, effective waste management is a concern. Poor regulation of waste in surrounding areas leads to rapid spread of contagious disease risks. Traditional waste object management requires more working staff, increases effort, consumes time and is relatively ineffective. In this research, an Intelligence of Things Enabled Smart Waste Management (IoT-SWM) model with predictive capabilities is developed. Here, local sinks (LS) are deployed in specified locations. At every instant, the current status of smart bins in each LS is notified to users to determine the priority level of LS to be emptied. Based on aggregated sensor values for the three smart bins, LS weight and poison gas value, the priority order of emptying LS is computed, and decision is made whether to notify the users with an alert message or not. It also helps in predicting the LS, which is likely to be filled up at a faster rate based on assigned timestamp. This model is implemented in real time with many LS and it was observed that bins, which were close to more crowded sites filled up faster compared to sparse populated areas. Random forest algorithm was used to predict whether an alert notification is to be sent or not. An average mean of 95.8% accuracy was noted while using 60 decision trees in random forest algorithm. The average mean execution latency recorded for training and testing sets is 13.06 sec and 14.39 sec respectively. Observed accuracy rate, precision, recall and f1-score parameters were 95.8%, 96.5%, 98.5% and 97.2% respectively. Model buildup and the validation time computed were 3.26 sec and 4.25 sec respectively. It is also noted that at a threshold value of 0.93 in LS level, the maximum accuracy rate reached was 95.8%. Thus, based on the prediction of random forest approach, a decision to notify the users is taken. Obtained outcome indicates that the waste level can be efficiently determined, and the overflow of dustbins can be easily checked in tim

    Glass and metal waste collection for Romsdal Interkommunale Renovasjonsselskap

    Get PDF
    • …
    corecore