7,808 research outputs found

    The formal verification of generic interpreters

    Get PDF
    The task assignment 3 of the design and validation of digital flight control systems suitable for fly-by-wire applications is studied. Task 3 is associated with formal verification of embedded systems. In particular, results are presented that provide a methodological approach to microprocessor verification. A hierarchical decomposition strategy for specifying microprocessors is also presented. A theory of generic interpreters is presented that can be used to model microprocessor behavior. The generic interpreter theory abstracts away the details of instruction functionality, leaving a general model of what an interpreter does

    Specification and validation of control intensive ICs in hopCP

    Get PDF
    technical reportControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations polling and interrupt driven modes of operation multiple concurrent threads of execution non-trivial computational requirements and programmability. In this paper we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous / Asynchronous Receiver Transmitter (USART), using our hardware description language 'hopCP'. A feature of hopCP is that it supports communication via synchronous ports in addition to synchronous message passing Asynchronous ports are distributed shared variables writable by exactly one process We show the usefulness of this combination of communication constructs We outline algorithms to determine safe usages of asynchronous ports and also to discover other static properties of the specification We discuss a compiled code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Specification and validation of control-intensive integrated circuits in hopCP

    Get PDF
    technical reportControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a seraantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    Water vapor radiometry research and development phase

    Get PDF
    This report describes the research and development phase for eight dual-channel water vapor radiometers constructed for the Crustal Dynamics Project at the Goddard Space Flight Center, Greenbelt, Maryland, and for the NASA Deep Space Network. These instruments were developed to demonstrate that the variable path delay imposed on microwave radio transmissions by atmospheric water vapor can be calibrated, particularly as this phenomenon affects very long baseline interferometry measurement systems. Water vapor radiometry technology can also be used in systems that involve moist air meteorology and propagation studies

    CFSIM: A concurrent compiled-code functional simulator for hopCP

    Get PDF
    Journal ArticleControl intensive ICs pose a significant challenge to the users of formal methods in designing hardware. These ICs have to support a wide variety of requirements including synchronous and asynchronous operations, polling and interrupt-driven modes of operation, multiple concurrent threads of execution, complex computations, and programmability. In this paper, we illustrate the use of formal methods in the design of a control intensive IC called the "Intel 8251" Universal Synchronous/Asynchronous Receiver/Transmitter (USART), using our formal hardware description language 'hopCP'. A feature of hopCP is that it supports communication via asynchronous ports (distributed shared variables writable by exactly one process), in addition to synchronous message passing. We show the usefulness of this combination of communication constructs. We outline static analysis algorithms to determine safe usages of asynchronous ports, and also to discover other static properties of the specification. We discuss a compiled-code concurrent functional simulator called CFSIM, as well as the use of concurrent testers for driving CFSIM. The use of a semantically well specified and simple language, and the associated analysis/simulation tools helps conquer the complexity of specifying and validating control intensive ICs

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    hopCP: A concurrent hardware description language

    Get PDF
    Journal ArticlehopCP is a language for the specification, simulation, and synthesis of hardware systems. hopCP captures the behavior of a hardware system by specifying the causal relationships between actions that the system can perform. No specific timing discipline is implied by a hopCP specification. Hence, hopCP specifications can be implemented as synchronous, asynchronous, or mixed synchronous and asynchronous circuits. Salient features of hopCP include nonatomic actions, synchronous and asynchronous styles of value communication, broadcast channels, a purely functional sublanguage to express the computational aspects of hardware behavior, and an efficient tool (called parComp) to infer the composite behavior of a collection of hopCP modules. Operational Semantics of hopCP in terms of labeled transition systems is presented. A few examples are described to illustrate the expressive power of hopCP. A summary of the implementation is also presented
    corecore