163 research outputs found

    Regressive Prediction Approach to Vertical Handover in Fourth Generation Wireless Networks

    Get PDF
    The over increasing demand for deployment of wireless access networks has made wireless mobile devices to face so many challenges in choosing the best suitable network from a set of available access networks. Some of the weighty issues in 4G wireless networks are fastness and seamlessness in handover process. This paper therefore, proposes a handover technique based on movement prediction in wireless mobile (WiMAX and LTE-A) environment. The technique enables the system to predict signal quality between the UE and Radio Base Stations (RBS)/Access Points (APs) in two different networks. Prediction is achieved by employing the Markov Decision Process Model (MDPM) where the movement of the UE is dynamically estimated and averaged to keep track of the signal strength of mobile users. With the help of the prediction, layer-3 handover activities are able to occur prior to layer-2 handover, and therefore, total handover latency can be reduced. The performances of various handover approaches influenced by different metrics (mobility velocities) were evaluated. The results presented demonstrate good accuracy the proposed method was able to achieve in predicting the next signal level by reducing the total handover latency

    Modeling Seamless Vertical Handovers in Heterogeneous Wireless Networks

    Get PDF
    Vertical handover in heterogeneous wireless networks provides customers with better Quality of Service (QoS) experience. For seamless handover, timely initiation of handover process plays a key role. Various vertical handover management protocols have been proposed and standardized to support mobility across heterogeneous networks. In Media Independent Handover (MIH) based schemes, distributed handover decision is made via certain predefined triggers that consider user context. In this paper, we present a comprehensive review of the modeling techniques used during management of vertical handover. We have also defined a novel architecture, HRPNS: Handoff Resolving and Preferred Network Selection module enabling vertical handover that ensures QoS. The construction of HRPNS module involves integration of fuzzy logic and Markov Decision Process (MDP) for providing precise decision of handover

    A hybrid intelligent model for network selection in the industrial Internet of Things

    Get PDF
    Industrial Internet of Things (IIoT) plays an important role in increasing productivity and efficiency in heterogeneous wireless networks. However, different domains such as industrial wireless scenarios, small cell domains and vehicular ad hoc networks (VANET) require an efficient machine learning/intelligent algorithm to process the vertical handover decision that can maintain mobile terminals (MTs) in the preferable networks for a sufficient duration of time. The preferred quality of service parameters can be differentiated from all the other MTs. Hence, in this paper, the problem with the vertical handoff (VHO) decision is articulated as the process of the Markov decision aimed to maximize the anticipated total rewards as well as to minimize the handoffs’ average count. A rewards function is designed to evaluate the QoS at the point of when the connections take place, as that is where the policy decision for a stationary deterministic handoff can be established. The proposed hybrid model merges the biogeography-based optimization (BBO) with the Markov decision process (MDP). The MDP is utilized to establish the radio access technology (RAT) selection’s probability that behaves as an input to the BBO process. Therefore, the BBO determines the best RAT using the described multi-point algorithm in the heterogeneous network. The numerical findings display the superiority of this paper’s proposed schemes in comparison with other available algorithms. The findings shown that the MDP-BBO algorithm is able to outperform other algorithms in terms of number of handoffs, bandwidth availability, and decision delays. Our algorithm displayed better expected total rewards as well as a reduced average account of handoffs compared to current approaches. Simulation results obtained from Monte-Carlo experiments prove validity of the proposed model

    Handoff Decision for Multi-user Multi-class Traffic in MIMO-LTE-A Networks

    Get PDF
    AbstractLTE-A networks do not have a central controlling system or node and is made up of several networking technologies. Handover is a method to assure that users can move freely within a network without losing the network connection. Thus, handoff is important in LTE-A to maintain the quality of service. But, handoffs in LTE-A face numerous issues like rapid change in network topology, failure in calls maintenance, etc. Thus, making efficient handoff decision is important. So, in this paper we develop a vertical handoff decision model on the basis of the utility model such that the handoff occurs only to the suitable cells in order to avoid any problem in maintaining the network connectivity

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field
    • …
    corecore