62 research outputs found

    The paradigm-shift of social spambots: Evidence, theories, and tools for the arms race

    Full text link
    Recent studies in social media spam and automation provide anecdotal argumentation of the rise of a new generation of spambots, so-called social spambots. Here, for the first time, we extensively study this novel phenomenon on Twitter and we provide quantitative evidence that a paradigm-shift exists in spambot design. First, we measure current Twitter's capabilities of detecting the new social spambots. Later, we assess the human performance in discriminating between genuine accounts, social spambots, and traditional spambots. Then, we benchmark several state-of-the-art techniques proposed by the academic literature. Results show that neither Twitter, nor humans, nor cutting-edge applications are currently capable of accurately detecting the new social spambots. Our results call for new approaches capable of turning the tide in the fight against this raising phenomenon. We conclude by reviewing the latest literature on spambots detection and we highlight an emerging common research trend based on the analysis of collective behaviors. Insights derived from both our extensive experimental campaign and survey shed light on the most promising directions of research and lay the foundations for the arms race against the novel social spambots. Finally, to foster research on this novel phenomenon, we make publicly available to the scientific community all the datasets used in this study.Comment: To appear in Proc. 26th WWW, 2017, Companion Volume (Web Science Track, Perth, Australia, 3-7 April, 2017

    An Enhanced Scammer Detection Model for Online Social Network Frauds Using Machine Learning

    Get PDF
    The prevalence of online social networking increase in the risk of social network scams or fraud. Scammers often create fake profiles to trick unsuspecting users into fraudulent activities. Therefore, it is important to be able to identify these scammer profiles and prevent fraud such as dating scams, compromised accounts, and fake profiles. This study proposes an enhanced scammer detection model that utilizes user profile attributes and images to identify scammer profiles in online social networks. The approach involves preprocessing user profile data, extracting features, and machine learning algorithms for classification. The system was tested on a dataset created specifically for this study and was found to have an accuracy rate of 94.50% with low false-positive rates. The proposed approach aims to detect scammer profiles early on to prevent online social network fraud and ensure a safer environment for society and women’s safety

    Integrated approach to detect spam in social media networks using hybrid features

    Get PDF
    Online social networking sites are becoming more popular amongst Internet users. The Internet users spend some amount of time on popular social networking sites like Facebook, Twitter and LinkedIn etc. Online social networks are considered to be much useful tool to the society used by Internet lovers to communicate and transmit information. These social networking platforms are useful to share information, opinions and ideas, make new friends, and create new friend groups. Social networking sites provide large amount of technical information to the users. This large amount of information in social networking sites attracts cyber criminals to misuse these sites information. These users create their own accounts and spread vulnerable information to the genuine users. This information may be advertising some product, send some malicious links etc to disturb the natural users on social sites. Spammer detection is a major problem now days in social networking sites. Previous spam detection techniques use different set of features to classify spam and non spam users. In this paper we proposed a hybrid approach which uses content based and user based features for identification of spam on Twitter network. In this hybrid approach we used decision tree induction algorithm and Bayesian network algorithm to construct a classification model. We have analysed the proposed technique on twitter dataset. Our analysis shows that our proposed methodology is better than some other existing techniques

    Towards Name Disambiguation: Relational, Streaming, and Privacy-Preserving Text Data

    Get PDF
    In the real world, our DNA is unique but many people share names. This phenomenon often causes erroneous aggregation of documents of multiple persons who are namesakes of one another. Such mistakes deteriorate the performance of document retrieval, web search, and more seriously, cause improper attribution of credit or blame in digital forensics. To resolve this issue, the name disambiguation task 1 is designed to partition the documents associated with a name reference such that each partition contains documents pertaining to a unique real-life person. Existing algorithms for this task mainly suffer from the following drawbacks. First, the majority of existing solutions substantially rely on feature engineering, such as biographical feature extraction, or construction of auxiliary features from Wikipedia. However, for many scenarios, such features may be costly to obtain or unavailable in privacy sensitive domains. Instead we solve the name disambiguation task in restricted setting by leveraging only the relational data in the form of anonymized graphs. Second, most of the existing works for this task operate in a batch mode, where all records to be disambiguated are initially available to the algorithm. However, more realistic settings require that the name disambiguation task should be performed in an online streaming fashion in order to identify records of new ambiguous entities having no preexisting records. Finally, we investigate the potential disclosure risk of textual features used in name disambiguation and propose several algorithms to tackle the task in a privacy-aware scenario. In summary, in this dissertation, we present a number of novel approaches to address name disambiguation tasks from the above three aspects independently, namely relational, streaming, and privacy preserving textual data

    REPLOT : REtrieving Profile Links on Twitter for malicious campaign discovery

    Get PDF
    Social networking sites are increasingly subject to malicious activities such as self-propagating worms, confidence scams and drive-by-download malwares. The high number of users associated with the presence of sensitive data, such as personal or professional information, is certainly an unprecedented opportunity for attackers. These attackers are moving away from previous platforms of attack, such as emails, towards social networking websites. In this paper, we present a full stack methodology for the identification of campaigns of malicious profiles on social networking sites, composed of maliciousness classification, campaign discovery and attack profiling. The methodology named REPLOT, for REtrieving Profile Links On Twitter, contains three major phases. First, profiles are analysed to determine whether they are more likely to be malicious or benign. Second, connections between suspected malicious profiles are retrieved using a late data fusion approach consisting of temporal and authorship analysis based models to discover campaigns. Third, the analysis of the discovered campaigns is performed to investigate the attacks. In this paper, we apply this methodology to a real world dataset, with a view to understanding the links between malicious profiles, their attack methods and their connections. Our analysis identifies a cluster of linked profiles focusing on propagating malicious links, as well as profiling two other major clusters of attacking campaigns. © 2016 - IOS Press and the authors. All rights reserved
    • …
    corecore