109 research outputs found

    MBSE Certification-Driven Design of a UAV MALE Configuration in the AGILE 4.0 Design Environment

    Get PDF
    This paper presents a certification-driven design process for an Unmanned Medium-Altitude- Long-Endurance (UAV MALE) air vehicle, including on-board system design and placements, electro-magnetic compatibility analysis, and thermal risk assessments. In literature, the preliminary aircraft design phase is mainly driven by mission performances and structural integrity aspects. However, the inclusion of other disciplines, like on-board system design or electro-magnetic compatibility, or thermal analysis, can lead to more efficient and cost- effective solutions and becomes paramount for non-conventional configurations like unmanned vehicles or highly electrified platforms. In the EC-funded AGILE 4.0 project (2019-2022), the traditional scope of the preliminary aircraft design is extended by including domains that are usually considered only in later design phases, such as certification, production and maintenance. In this paper, the AGILE 4.0 design environment supports the definition and execution of a certification-driven design process of a UAV MALE configuration, using a Model-Based Systems Engineering (MBSE) approach

    A model-based rams estimation methodology for innovative aircraft on-board systems supporting mdo applications

    Get PDF
    The reduction of aircraft operating costs is one of the most important objectives addressed by aeronautical manufactures and research centers in the last decades. In order to reach this objective, one of the current ways is to develop innovative on-board system architectures, which can bring to lower fuel and maintenance costs. The development and optimization of these new aircraft on-board systems can be addressed through a Multidisciplinary Design Optimization (MDO) approach, which involves different disciplines. One relevant discipline in this MDO problem is Reliability, Availability, Maintainability and Safety (RAMS), which allows the assessment of the reliability and safety of aircraft systems. Indeed the development of innovative systems cannot comply with only performance requirements, but also with reliability and safety constraints. Therefore, the RAMS discipline plays an important role in the development of innovative on-board systems. In the last years, different RAMS models and methods have been defined, considering both conventional and innovative architectures. However, most of them rely on a document-based approach, which makes difficult and time consuming the use of information gained through their analysis to improve system architectures. On the contrary, a model-based approach would make easier and more accessible the study of systems reliability and safety, as explained in several studies. Model Based Systems Engineering (MBSE) is an emerging approach that is mainly used for the design of complex systems. However, only a few studies propose this approach for the evaluation of system safety and reliability. The aim of this paper is therefore to propose a MBSE approach for model-based RAMS evaluations. The paper demonstrates that RAMS models can be developed to quickly and more effectively assess the reliability and safety of conventional and innovative on-board system architectures. In addition, further activities for the integration of the model-based RAMS methodology within MDO processes are described in the paper

    Investigating the Flexibility of the MBSE Approach to the Biomass Mission

    Get PDF

    Collaborative Design of a Business Jet Family Using the AGILE 4.0 MBSE Environment

    Get PDF
    This paper presents the collaborative model-based design of a business jet family. In family design, a trade-off is made between aircraft performance, reducing fuel burn, and commonality, reducing manufacturing costs. The family is designed using Model-Based Systems Engineering (MBSE) methods developed in the AGILE 4.0 project. The EC-funded AGILE 4.0 project extends the scope of the preliminary aircraft design process to also include systems engineering phases and new design domains like manufacturing, maintenance, and certification. Stakeholders, needs, requirements, and architecture models of the business jet family are presented. Then, the collaborative Multidisciplinary Design Analysis and Optimization (MDAO) capabilities are used to integrate various aircraft design disciplines, including overall aircraft design, onboard systems design, wing structural sizing, tailplane sizing, mission analysis, and cost estimation. Decisions regarding the degree of commonality are implemented by optionally fixing the design of a shared component when sizing an aircraft

    Enhancing the test and evaluation process: implementing agile development, test automation, and model-based systems engineering concepts

    Get PDF
    2020 Fall.Includes bibliographical references.With the growing complexity of modern systems, traditional testing methods are falling short. Test documentation suites used to verify the software for these types of large, complex systems can become bloated and unclear, leading to extremely long execution times and confusing, unmanageable test procedures. Additionally, the complexity of these systems can prevent the rapid understanding of complicated system concepts and behaviors, which is a necessary part of keeping up with the demands of modern testing efforts. Opportunities for optimization and innovation exist within the Test and Evaluation (T&E) domain, evidenced by the emergence of automated testing frameworks and iterative testing methodologies. Further opportunities lie with the directed expansion and application of related concepts such as Model-Based Systems Engineering (MBSE). This dissertation documents the development and implementation of three methods of enhancing the T&E field when applied to a real-world project. First, the development methodology of the system was transitioned from Waterfall to Agile, providing a more responsive approach when creating new features. Second, the Test Automation Framework (TAF) was developed, enabling the automatic execution of test procedures. Third, a method of test documentation using the Systems Modeling Language (SysML) was created, adopting concepts from MBSE to standardize the planning and analysis of test procedures. This dissertation provides the results of applying the three concepts to the development process of an airborne Electronic Warfare Management System (EWMS), which interfaces with onboard and offboard aircraft systems to receive and process the threat environment, providing the pilot or crew with a response solution for the protection of the aircraft. This system is representative of a traditional, long-term aerospace project that has been constantly upgraded over its lifetime. Over a two-year period, this new process produced a number of qualitative and quantitative results, including improving the quality and organization of the test documentation suite, reducing the minimum time to execute the test procedures, enabling the earlier identification of defects, and increasing the overall quality of the system under test. The application of these concepts generated many lessons learned, which are also provided. Transitioning a project's development methodology, modernizing the test approach, and introducing a new system of test documentation may provide significant benefits to the development of a system, but these types of process changes must be weighed against the needs of the project. This dissertation provides details of the effort to improve the effectiveness of the T&E process on an example project, as a framework for possible implementation on similar systems

    A Model-Based System Engineering Approach to Support System Architecting Activities in Early Aircraft Design

    Get PDF
    The aviation industry aims to reduce its environmental footprint and meet ambitious environmental targets, prompting the exploration of novel aircraft concepts and systems, such as hybrid-electric or distributed propulsion. These emerging technologies introduce complexity to aircraft system architectures, requiring innovative approaches to design, optimization, and safety assessment, particularly for system architecting. Several aspects of system architecting specification and evaluation are typically performed separately, using different people and a mix of manual and model-based processes. Connecting these activities has the potential to make the design process more efficient and effective. This thesis explores how a Model-Based Systems Engineering (MBSE) specification environment can be structured and enriched to enable a better bridge to Multidisciplinary Design Analysis and Optimization (MDAO) and Model-Based Safety Assessment (MBSA) activities. The proposed MBSE approach focuses on enhancing system specifications, particularly for unconventional system architectures, which typically feature greater variability in early design stages. Using the ARCADIA/Capella MBSE environment, a multi-level approach is proposed to structure the system architecture specification and the Property Value Management Tool (PVMT) add-on is used to facilitate the bridge to other system architecting activities. In addition, a catalogue of modeling artifacts is established to facilitate the development of various hybrid-electric system configurations. The MDAO link mechanism is demonstrated with an example from the collaborative AGILE4.0 project. Two test cases demonstrate the implementation of the approach: a hybrid-electric propulsion system and associated sub-systems for the overall approach and the landing gear braking system for the model-based Functional Hazard Analysis (FHA), as an example of an MBSA activity. Overall, this thesis helps improve the integration and collaboration between engineers working on MBSE, MDAO, and MBSA. This better integration will help to reduce the development time and risk. Therefore, the presented thesis contributes to a more efficient aircraft development process, enabling the industry to tackle the emerging needs of unconventional aircraft systems and their integration

    Tradespace and Affordability – Phase 2

    Get PDF
    MOTIVATION AND CONTEXT: One of the key elements of the SERC’s research strategy is transforming the practice of systems engineering – “SE Transformation.” The Grand Challenge goal for SE Transformation is to transform the DoD community’s current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first, outside-in, document-driven, point-solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, balanced outside-in and inside-out, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08- D-0171 (Task Order 0031, RT 046)

    Design techniques to support aircraft systems development in a collaborative MDO environment

    Get PDF
    The aircraft design is a complex multidisciplinary and collaborative process. Thousands of disciplinary experts with different design competences are involved within the whole development process. The design disciplines are often in contrast with each other, as their objectives might be not coincident, entailing compromises for the determination of the global optimal solution. Therefore, Multidisciplinary Design and Optimization (MDO) algorithms are being developed to mathematically overcome the divergences among the design disciplines. However, a MDO formulation might identify an optimal solution, but it could be not sufficient to ensure the success of a project. The success of a new project depends on two factors. The first one is relative to the aeronautical product, which has to be compliant with all the capabilities actually demanded by the stakeholders. Furthermore, a “better” airplane may be developed in accordance with customer expectations concerning better performance, lower operating costs and fewer emissions. The second important factor refers to the competitiveness among the new designed product and all the other competitors. The Time-To-Market should be reduced to introduce in the market an innovative product earlier than the other aeronautical industries. Furthermore, development costs should be decreased to maximize profits or to sell the product at a lower price. Finally, the development process must reduce all the risks due to wrong design choices. These two main motivations entail two main objectives of the current dissertation. The first main objective regards the assessment and development of design techniques for the integration of the aircraft subsystems conceptual design discipline within a collaborative and multidisciplinary development methodology. This methodology shall meet all the necessities required to design an optimal and competitive product. The second goal is relative to the employment of the proposed design methodology for the initial development of innovative solutions. As the design process is multidisciplinary, this thesis is focused on the on-board systems discipline, without neglecting the interactions among this discipline with all the other design disciplines. Thus, two kinds of subsystems are treated in the current dissertation. The former deals with hybrid-electric propulsion systems installed aboard Remotely Piloted Aerial Systems (RPASs) and general aviation airplanes. The second case study is centered on More and All Electric on-board system architectures, which are characterized by the removal of the hydraulic and/or pneumatic power generation systems in favor of an enhancement of the electrical system. The proposed design methodology is based on a Systems Engineering approach, according to which all the customer needs and required system functionalities are defined since the earliest phase of the design. The methodology is a five-step process in which several techniques are implemented for the development of a successful product. In Step 1, the design case and the requirements are defined. A Model Based Systems Engineering (MBSE) approach is adopted for the derivation and development of all the functionalities effectively required by all the involved stakeholders. All the design disciplines required in the MDO problem are then collected in Step 2. In particular, all the relations among these disciplines – in terms of inputs/outputs – are outlined, in order to facilitate their connection and the setup of the design workflow. As the present thesis is mainly focused on the on-board system design discipline, several algorithms for the preliminary sizing of conventional and innovative subsystems (included the hybrid propulsion system) are presented. In the third step, an MDO problem is outlined, determining objectives, constraints and design variables. Some design problems are analyzed in the present thesis: un-converged and converged Multidisciplinary Design Analysis (MDA), Design Of Experiments (DOE), optimization. In this regard, a new multi-objective optimization method based on the Fuzzy Logic has been developed during the doctoral research. This proposed process would define the “best” aircraft solution negotiating and relaxing some constraints and requirements characterized by a little worth from the user perspective. In Step 4, the formulation of the MDO problem is then transposed into a MDO framework. Two kinds of design frameworks are here considered. The first one is centered on the subsystems design, with the aim of preliminarily highlighting the impacts of this discipline on the entire Overall Aircraft Design (OAD) process and vice-versa. The second framework is distributed, as many disciplinary experts are involved within the design process. In this case, the level of fidelity of the several disciplinary modules is higher than the first framework, but the effort needed to setup the entire workflow is much higher. The proposed methodology ends with the investigation of the design space through the implemented framework, eventually selecting the solution of the design problem (Step 5). The capability of the proposed methodology and design techniques is demonstrated by means of four application cases. The first case study refers to the initial definition of the physical architecture of a hybrid propulsion system based on a set of needs and capabilities demanded by the customer. The second application study is focused on the preliminary sizing of a hybrid-electric propulsion system to be installed on a retrofit version of a well-known general aviation aircraft. In the third case study, the two kinds of MDO framework previously introduced are employed to design conventional, More Electric and All Electric subsystem architectures for a 90-passenger regional jet. The last case study aims at minimizing the aircraft development costs. A Design-To-Cost approach is adopted for the design of a hybrid propulsion system

    Assessment of the Orion-SLS Interface Management Process in Achieving the EIA 731.1 Systems Engineering Capability Model Generic Practices Level 3 Criteria

    Get PDF
    NASA is currently developing the next generation crewed spacecraft and launch vehicle for exploration beyond earth orbit including returning to the Moon and making the transit to Mars. Managing the design integration of major hardware elements of a space transportation system is critical for overcoming both the technical and programmatic challenges in taking a complex system from concept to space operations. An established method of accomplishing this is formal interface management. In this paper we set forth an argument that the interface management process implemented by NASA between the Orion Multi-Purpose Crew Vehicle (MPCV) and the Space Launch System (SLS) achieves the Level 3 tier of the EIA 731.1 System Engineering Capability Model (SECM) for Generic Practices. We describe the relevant NASA systems and associated organizations, and define the EIA SECM Level 3 Generic Practices. We then provide evidence for our compliance with those practices. This evidence includes discussions of: NASA Systems Engineering Interface (SE) Management standard process and best practices; the tailoring of that process for implementation on the Orion to SLS interface; changes made over time to improve the tailored process, and; the opportunities to take the resulting lessons learned and propose improvements to our institutional processes and best practices. We compare this evidence against the practices to form the rationale for the declared SECM maturity level
    • …
    corecore