214 research outputs found

    Stochastic Sampling and Machine Learning Techniques for Social Media State Production

    Get PDF
    The rise in the importance of social media platforms as communication tools has been both a blessing and a curse. For scientists, they offer an unparalleled opportunity to study human social networks. However, these platforms have also been used to propagate misinformation and hate speech with alarming velocity and frequency. The overarching aim of our research is to leverage the data from social media platforms to create and evaluate a high-fidelity, at-scale computational simulation of online social behavior which can provide a deep quantitative understanding of adversaries\u27 use of the global information environment. Our hope is that this type of simulation can be used to predict and understand the spread of misinformation, false narratives, fraudulent financial pump and dump schemes, and cybersecurity threats. To do this, our research team has created an agent-based model that can handle a variety of prediction tasks. This dissertation introduces a set of sampling and deep learning techniques that we developed to predict specific aspects of the evolution of online social networks that have proven to be challenging to accurately predict with the agent-based model. First, we compare different strategies for predicting network evolution with sampled historical data based on community features. We demonstrate that our community-based model outperforms the global one at predicting population, user, and content activity, along with network topology over different datasets. Second, we introduce a deep learning model for burst prediction. Bursts may serve as a signal of topics that are of growing real-world interest. Since bursts can be caused by exogenous phenomena and are indicative of burgeoning popularity, leveraging cross-platform social media data is valuable for predicting bursts within a single social media platform. An LSTM model is proposed in order to capture the temporal dependencies and associations based upon activity information. These volume predictions can also serve as a valuable input for our agent-based model. Finally, we conduct an exploration of Graph Convolutional Networks to investigate the value of weak-ties in classifying academic literature with the use of graph convolutional neural networks. Our experiments look at the results of treating weak-ties as if they were strong-ties to determine if that assumption improves performance. We also examine how node removal affects prediction accuracy by selecting nodes according to different centrality measures. These experiments provide insight for which nodes are most important for the performance of targeted graph convolutional networks. Graph Convolutional Networks are important in the social network context as the sociological and anthropological concept of \u27homophily\u27 allows for the method to use network associations in assisting the attribute predictions in a social network

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Context-Aware Message-Level Rumour Detection with Weak Supervision

    Get PDF
    Social media has become the main source of all sorts of information beyond a communication medium. Its intrinsic nature can allow a continuous and massive flow of misinformation to make a severe impact worldwide. In particular, rumours emerge unexpectedly and spread quickly. It is challenging to track down their origins and stop their propagation. One of the most ideal solutions to this is to identify rumour-mongering messages as early as possible, which is commonly referred to as "Early Rumour Detection (ERD)". This dissertation focuses on researching ERD on social media by exploiting weak supervision and contextual information. Weak supervision is a branch of ML where noisy and less precise sources (e.g. data patterns) are leveraged to learn limited high-quality labelled data (Ratner et al., 2017). This is intended to reduce the cost and increase the efficiency of the hand-labelling of large-scale data. This thesis aims to study whether identifying rumours before they go viral is possible and develop an architecture for ERD at individual post level. To this end, it first explores major bottlenecks of current ERD. It also uncovers a research gap between system design and its applications in the real world, which have received less attention from the research community of ERD. One bottleneck is limited labelled data. Weakly supervised methods to augment limited labelled training data for ERD are introduced. The other bottleneck is enormous amounts of noisy data. A framework unifying burst detection based on temporal signals and burst summarisation is investigated to identify potential rumours (i.e. input to rumour detection models) by filtering out uninformative messages. Finally, a novel method which jointly learns rumour sources and their contexts (i.e. conversational threads) for ERD is proposed. An extensive evaluation setting for ERD systems is also introduced

    Automated anomaly recognition in real time data streams for oil and gas industry.

    Get PDF
    There is a growing demand for computer-assisted real-time anomaly detection - from the identification of suspicious activities in cyber security, to the monitoring of engineering data for various applications across the oil and gas, automotive and other engineering industries. To reduce the reliance on field experts' knowledge for identification of these anomalies, this thesis proposes a deep-learning anomaly-detection framework that can help to create an effective real-time condition-monitoring framework. The aim of this research is to develop a real-time and re-trainable generic anomaly-detection framework, which is capable of predicting and identifying anomalies with a high level of accuracy - even when a specific anomalous event has no precedent. Machine-based condition monitoring is preferable in many practical situations where fast data analysis is required, and where there are harsh climates or otherwise life-threatening environments. For example, automated conditional monitoring systems are ideal in deep sea exploration studies, offshore installations and space exploration. This thesis firstly reviews studies about anomaly detection using machine learning. It then adopts the best practices from those studies in order to propose a multi-tiered framework for anomaly detection with heterogeneous input sources, which can deal with unseen anomalies in a real-time dynamic problem environment. The thesis then applies the developed generic multi-tiered framework to two fields of engineering: data analysis and malicious cyber attack detection. Finally, the framework is further refined based on the outcomes of those case studies and is used to develop a secure cross-platform API, capable of re-training and data classification on a real-time data feed
    • …
    corecore