16 research outputs found

    A simple state-based prognostic model for filter clogging

    Get PDF
    In today's maintenance planning, fuel filters are replaced or cleaned on a regular basis. Monitoring and implementation of prognostics on filtration system have the potential to avoid costs and increase safety. Prognostics is a fundamental technology within Integrated Vehicle Health Management (IVHM). Prognostic models can be categorised into three major categories: 1) Physics-based models 2) Data-driven models 3) Experience-based models. One of the challenges in the progression of the clogging filter failure is the inability to observe the natural clogging filter failure due to time constraint. This paper presents a simple solution to collect data for a clogging filter failure. Also, it represents a simple state-based prognostic with duration information (SSPD) method that aims to detect and forecast clogging of filter in a laboratory based fuel rig system. The progression of the clogging filter failure is created unnaturally. The degradation level is divided into several groups. Each group is defined as a state in the failure progression of clogging filter. Then, the data is collected to create the clogging filter progression states unnaturally. The SSPD method consists of three steps: clustering, clustering evaluation, and remaining useful life (RUL) estimation. Prognosis results show that the SSPD method is able to predicate the RUL of the clogging filter accurately

    Fault prognostic based on AR-LSSVR for electrolytic capacitor

    Get PDF
    U radu se opisuje metoda predviđanja greÅ”ke na osnovu Autoregressive - Support Vector Regression Metode (AR-LSSVR) za elektrolitički kondenzator. Budući da je elektrolitički kondenzator jeftin, a velik, uveliko se primjenjuje u elektroničkim krugovima. Najprije se daje osnovni model i algoritam za predviđanje greÅ”ke za AR, LSSVM i AR-LSSVR. Model AR-LSSVR kombinira prednosti algoritma LSSVR-a i modela AR te ih dopunjuje kako bi se povećala točnost predviđanja. Daje se dijagram toka predviđanja pojave greÅ”ke na temelju AR-LSSVR. Konačno se AR-LSSVR model primjenjuje na Buck strujni krug. Rezultati pokazuju da je predviđanje greÅ”ke elektrolitičkog kondenzatora bolje primjenom modela AR-LSSVR.This paper puts forward a method of fault prognostic based on Autoregressive - Support Vector Regression Method (AR-LSSVR) for electrolytic capacitor. Because the electrolytic capacitor is low in cost and large in volume, it is widely used in power electronic circuits. Firstly it introduces the basic model and the fault prognostic algorithm of the AR, LSSVM and AR-LSSVR. The AR-LSSVR prediction model combines the prediction algorithm advantage of the LSSVR and the AR model and complements the two to enhance prediction accuracy. It introduces the flow chart of fault trend prediction based on AR-LSSVR. Finally, the AR-LSSVR model is applied to the Buck circuit. The results indicate that the AR-LSSVR model performs better in trend prediction of electrolytic capacitor

    Failure Prognosis of Wind Turbine Components

    Get PDF
    Wind energy is playing an increasingly significant role in the World\u27s energy supply mix. In North America, many utility-scale wind turbines are approaching, or are beyond the half-way point of their originally anticipated lifespan. Accurate estimation of the times to failure of major turbine components can provide wind farm owners insight into how to optimize the life and value of their farm assets. This dissertation deals with fault detection and failure prognosis of critical wind turbine sub-assemblies, including generators, blades, and bearings based on data-driven approaches. The main aim of the data-driven methods is to utilize measurement data from the system and forecast the Remaining Useful Life (RUL) of faulty components accurately and efficiently. The main contributions of this dissertation are in the application of ALTA lifetime analysis to help illustrate a possible relationship between varying loads and generators reliability, a wavelet-based Probability Density Function (PDF) to effectively detecting incipient wind turbine blade failure, an adaptive Bayesian algorithm for modeling the uncertainty inherent in the bearings RUL prediction horizon, and a Hidden Markov Model (HMM) for characterizing the bearing damage progression based on varying operating states to mimic a real condition in which wind turbines operate and to recognize that the damage progression is a function of the stress applied to each component using data from historical failures across three different Canadian wind farms

    Time Series Adaptive Online Prediction Method Combined with Modified LS-SVR and AGO

    Get PDF
    Fault or health condition prediction of the complex systems has attracted more attention in recent years. The complex systems often show complex dynamic behavior and uncertainty, which makes it difficult to establish a precise physical model. Therefore, the time series of complex system is used to implement prediction in practice. Aiming at time series online prediction, we propose a new method to improve the prediction accuracy in this paper, which is based on the grey system theory and incremental learning algorithm. In this method, the accumulated generating operation (AGO) with the raw time series is taken to improve the data quality and regularity firstly; then the prediction is conducted by a modified LS-SVR model, which simplifies the calculation process with incremental learning; finally, the inverse accumulated generating operation (IAGO) is performed to get the prediction results. The results of the prediction experiments indicate preliminarily that the proposed scheme is an effective prediction approach for its good prediction precision and less computing time. The method will be useful in actual application

    An investigation into the prognosis of electromagnetic relays.

    Get PDF
    Electrical contacts provide a well-proven solution to switching various loads in a wide variety of applications, such as power distribution, control applications, automotive and telecommunications. However, electrical contacts are known for limited reliability due to degradation effects upon the switching contacts due to arcing and fretting. Essentially, the life of the device may be determined by the limited life of the contacts. Failure to trip, spurious tripping and contact welding can, in critical applications such as control systems for avionics and nuclear power application, cause significant costs due to downtime, as well as safety implications. Prognostics provides a way to assess the remaining useful life (RUL) of a component based on its current state of health and its anticipated future usage and operating conditions. In this thesis, the effects of contact wear on a set of electromagnetic relays used in an avionic power controller is examined, and how contact resistance combined with a prognostic approach, can be used to ascertain the RUL of the device. Two methodologies are presented, firstly a Physics based Model (PbM) of the degradation using the predicted material loss due to arc damage. Secondly a computationally efficient technique using posterior degradation data to form a state space model in real time via a Sliding Window Recursive Least Squares (SWRLS) algorithm. Health monitoring using the presented techniques can provide knowledge of impending failure in high reliability applications where the risks associated with loss-of-functionality are too high to endure. The future states of the systems has been estimated based on a Particle and Kalman-filter projection of the models via a Bayesian framework. Performance of the prognostication health management algorithm during the contacts life has been quantified using performance evaluation metrics. Model predictions have been correlated with experimental data. Prognostic metrics including Prognostic Horizon (PH), alpha-Lamda (Ī±-Ī»), and Relative Accuracy have been used to assess the performance of the damage proxies and a comparison of the two models made

    Vehicle level health assessment through integrated operational scalable prognostic reasoners

    Get PDF
    Todayā€™s aircraft are very complex in design and need constant monitoring of the systems to establish the overall health status. Integrated Vehicle Health Management (IVHM) is a major component in a new future asset management paradigm where a conscious effort is made to shift asset maintenance from a scheduled based approach to a more proactive and predictive approach. Its goal is to maximize asset operational availability while minimising downtime and the logistics footprint through monitoring deterioration of component conditions. IVHM involves data processing which comprehensively consists of capturing data related to assets, monitoring parameters, assessing current or future health conditions through prognostics and diagnostics engine and providing recommended maintenance actions. The data driven prognostics methods usually use a large amount of data to learn the degradation pattern (nominal model) and predict the future health. Usually the data which is run-to-failure used are accelerated data produced in lab environments, which is hardly the case in real life. Therefore, the nominal model is far from the present condition of the vehicle, hence the predictions will not be very accurate. The prediction model will try to follow the nominal models which mean more errors in the prediction, this is a major drawback of the data driven techniques. This research primarily presents the two novel techniques of adaptive data driven prognostics to capture the vehicle operational scalability degradation. Secondary the degradation information has been used as a Health index and in the Vehicle Level Reasoning System (VLRS). Novel VLRS are also presented in this research study. The research described here proposes a condition adaptive prognostics reasoning along with VLRS
    corecore