124 research outputs found

    An LPV control approach for comfort and suspension travel improvements of semi-active suspension systems

    Full text link

    An LP V/H∞ integrated Vehicle Dynamic Controller

    No full text
    International audienceThis paper is concerned with the design and analysis of a new multivariable LP V /H∞ (Linear Parameter Varying) robust control design strategy for Global Chassis Control. The main objective of this study is to handle critical driving situations by activating several controller subsystems in a hierarchical way. The proposed solution consists indeed in a two-step control strategy that uses semi-active suspensions, active steering and electro-mechanical braking actuators. The main idea of the strategy is to schedule the 3 control actions (braking, steering and suspension) according to the driving situation evaluated by a specific monitor. Indeed, on one hand, rear braking and front steering are used to enhance the vehicle yaw stability and lateral dynamics, and on the other hand, the semi-active suspensions to improve comfort and car handling performances. Thanks to the LP V /H∞ framework, this new approach allows to reach a smooth coordination between the various actuators, to ensure robustness and stability of the proposed solution, and to significantly improve the vehicle dynamical behavior. Simulations have been performed on a complex full vehicle model which has been validated using data obtained from experimental tests on a real Renault Mégane Coupé. Moreover, the suspension system uses Magneto-Rheological dampers whose characteristics have been obtained through experimental identification tests. A comparison between the proposed LPV/H∞ control strategy and a classical LTI/H∞ controller is performed using the same simulation scenarios and confirms the effectiveness of this approach

    Series active variable geometry suspension application to comfort enhancement

    Get PDF
    This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding

    LPV observer and control design methods for vehicle dynamics

    Get PDF
    International audienc

    LPV methods for fault-tolerant vehicle dynamic control

    No full text
    International audienceThis paper aims at presenting the interest of the Linear Parameter Varying methods for vehicle dynamics control, in particular when some actuators may be in failure. The cases of the semi-active suspension control problem and the yaw control using braking, steering and suspension actuators will be presented. In the first part, we will consider the semi-active suspension control problem, where some sensors or actuator (damper leakage) faults are considered. From a quarter-car vehicle model including a non linear semi-active damper model, an LPV model will be described, accounting for some actuator fault represented as some varying parameters. A single LPV fault-tolerant control approach is then developed to manage the system performances and constraints. In the second part the synthesis of a robust gain-scheduled H1 MIMO vehicle dynamic stability controller (VDSC), involving front steering, rear braking, and four active suspension actuators, is proposed to improve the yaw stability and lateral performances. An original LPV method for actuator coordination is proposed, when the actuator limitations and eventually failures, are taken into account. Some simulations on a complex full vehicle model (which has been validated on a real car), subject to critical driving situations (in particular a loss of some actuator), show the efficiency and robustness of the proposed solution

    Fault Tolerant Control in a Semi-active Suspension

    No full text
    6 pagesInternational audienceA Fault Tolerant Control System (FTCS) in a Quarter of Vehicle (QoV ) model is proposed. The control law is time-varying using a Linear Parameter-Varying (LPV ) based controller, which includes two scheduling parameters. One parameter for monitoring the nonlinear behavior of the damper, and another for fault accommodation using a reference model obtained by a state observer of the normal operating regime. The QoV model represents a semi-active suspension, including an experimental magneto-rheological damper model. The FTCS is analyzed when the velocity sensor fails abruptly and the QoV model is susceptible to disturbances in the road pro le. Simulation results show the e ectiveness of the FTCS in terms of vehicle comfort, suspension detection and road holding in comparison with a conventional LPV based control system. In the FTCS, the comfort index based on the power spectral density is within the desirable bound (1.8) in all range of frequencies, once the sensor fault has occurred; while, the conventional control system deteriorates the comfort 54 %, specially at low frequencies (0-4 Hz). Additionally, the FTCS improves the road holding and suspension de ection indexes, 33% and 39% respectively, when the fault accommodation is considered

    Approche LPV pour la commande robuste de la dynamique des véhicules (amélioration conjointe du confort et de la sécurité)

    Get PDF
    Ce travail concerne le développement de méthodes de commandes avancées pour les suspensions automobiles afin d'améliorer la tenue de route des véhicules et le confort des passagers, tout en respectant les contraintes technologiques liées aux actionneurs de suspension (passivité, non-linéarités, limite structurelle). Dans la 1ère partie, nous proposons deux schémas de commande par approche LPV polytopique (Linéaire à Paramètre Variant) et Stabilisation Forte (Strong Stabilization) avec optimisation par algorithme génétique pour résoudre les conflits confort/tenue de route et confort/débattement de suspension. Dans la 2ème partie, pour résoudre le problème complet de commande de suspensions semi-actives, nous développons d'abord une stratégie générique pour les systèmes LPV généraux soumis à la saturation des actionneurs et à des contraintes d'état. Le problème est étudié sous la forme de résolution d'inégalités linéaires matricielles (LMI) qui permettent de synthétiser un contrôleur LPV et un gain anti wind-up garantissant la stabilité et la performance du système en boucle fermée. Ensuite, cette stratégie est appliquée au cas de la commande des suspensions semi-actives. Les méthodes proposées sont validées par une évaluation basée sur un critère industriel et des simulations effectuées sur un modèle non-linéaire de quart de véhicule.This work concerns the development of advanced control methods for automotive suspensions to improve road holding and passenger comfort, while satisfying the technological constraints related to the suspension actuators (passivity, nonlinearity, structural limit). In the first part, we propose two control schemes by polytopic LPV (Linear Parameter Varying) approach and by Strong Stabilization with genetic algorithm optimization to solve the comfort/handling and comfort/suspension travel conflits. In the second part, to solve the full semi-active suspension problem, we develop first a generic strategy for general LPV systems subject to actuator saturation and state constraints. The problem is studied in the form of resolution matrix of linear inequalities (LMI) that allows synthesizing an LPV controller and an anti-windup gain to ensure the stability and performance of the closed-loop system. Second, the theoretical result is applied to the case of semi-active suspension control. The proposed methods are validated by an evaluation based on an industrial standard and simulations on a nonlinear quarter vehicle model.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Series active variable geometry suspension application to comfort enhancement

    Get PDF
    This paper explores the potential of the Series Active Variable Geometry Suspension (SAVGS) for comfort and road holding enhancement. The SAVGS concept introduces significant nonlinearities associated with the rotation of the mechanical link that connects the chassis to the spring-damper unit. Although conventional linearization procedures implemented in multi-body software packages can deal with this configuration, they produce linear models of reduced applicability. To overcome this limitation, an alternative linearization approach based on energy conservation principles is proposed and successfully applied to one corner of the car, thus enabling the use of linear robust control techniques. An H∞ controller is synthesized for this simplified quarter-car linear model and tuned based on the singular value decomposition of the system's transfer matrix. The proposed control is thoroughly tested with one-corner and full-vehicle nonlinear multi-body models. In the SAVGS setup, the actuator appears in series with the passive spring-damper and therefore it would typically be categorized as a low bandwidth or slow active suspension. However, results presented in this paper for an SAVGS-retrofitted Grand Tourer show that this technology has the potential to also improve the high frequency suspension functions such as comfort and road holding

    Integrated Comfort-Adaptive Cruise and Semi-Active Suspension Control for an Autonomous Vehicle: An LPV Approach

    Get PDF
    International audienceThis paper presents an integrated linear parameter-varying (LPV) control approach of an autonomous vehicle with an objective to guarantee driving comfort, consisting of cruise and semi-active suspension control. First, the vehicle longitudinal and vertical dynamics (equipped with a semi-active suspension system) are presented and written into LPV state-space representations. The reference speed is calculated online from the estimated road type and the desired comfort level (characterized by the frequency weighted vertical acceleration defined in the ISO 2631 norm) using precomputed polynomial functions. Then, concerning cruise control, an LPV H2 controller using a linear matrix inequality (LMI) based polytopic approach combined with the compensation of the estimated disturbance forces is developed to track the comfort-oriented reference speed. To further enhance passengers’ comfort, a decentralized LPV H2 controller for the semi-active suspension system is proposed, minimizing the effect of the road profile variations. The interaction with cruise control is achieved by the vehicle’s actual speed being a scheduling parameter for suspension control. To assess the strategy’s performance, simulations are conducted using a realistic nonlinear vehicle model validated from experimental data. The simulation results demonstrate the proposed approach’s capability to improve driving comfort

    A Human Driver Model for Autonomous Lane Changing in Highways: Predictive Fuzzy Markov Game Driving Strategy

    Get PDF
    This study presents an integrated hybrid solution to mandatory lane changing problem to deal with accident avoidance by choosing a safe gap in highway driving. To manage this, a comprehensive treatment to a lane change active safety design is proposed from dynamics, control, and decision making aspects. My effort first goes on driver behaviors and relating human reasoning of threat in driving for modeling a decision making strategy. It consists of two main parts; threat assessment in traffic participants, (TV s) states, and decision making. The first part utilizes an complementary threat assessment of TV s, relative to the subject vehicle, SV , by evaluating the traffic quantities. Then I propose a decision strategy, which is based on Markov decision processes (MDPs) that abstract the traffic environment with a set of actions, transition probabilities, and corresponding utility rewards. Further, the interactions of the TV s are employed to set up a real traffic condition by using game theoretic approach. The question to be addressed here is that how an autonomous vehicle optimally interacts with the surrounding vehicles for a gap selection so that more effective performance of the overall traffic flow can be captured. Finding a safe gap is performed via maximizing an objective function among several candidates. A future prediction engine thus is embedded in the design, which simulates and seeks for a solution such that the objective function is maximized at each time step over a horizon. The combined system therefore forms a predictive fuzzy Markov game (FMG) since it is to perform a predictive interactive driving strategy to avoid accidents for a given traffic environment. I show the effect of interactions in decision making process by proposing both cooperative and non-cooperative Markov game strategies for enhanced traffic safety and mobility. This level is called the higher level controller. I further focus on generating a driver controller to complement the automated car’s safe driving. To compute this, model predictive controller (MPC) is utilized. The success of the combined decision process and trajectory generation is evaluated with a set of different traffic scenarios in dSPACE virtual driving environment. Next, I consider designing an active front steering (AFS) and direct yaw moment control (DYC) as the lower level controller that performs a lane change task with enhanced handling performance in the presence of varying front and rear cornering stiffnesses. I propose a new control scheme that integrates active front steering and the direct yaw moment control to enhance the vehicle handling and stability. I obtain the nonlinear tire forces with Pacejka model, and convert the nonlinear tire stiffnesses to parameter space to design a linear parameter varying controller (LPV) for combined AFS and DYC to perform a commanded lane change task. Further, the nonlinear vehicle lateral dynamics is modeled with Takagi-Sugeno (T-S) framework. A state-feedback fuzzy H∞ controller is designed for both stability and tracking reference. Simulation study confirms that the performance of the proposed methods is quite satisfactory
    • …
    corecore