174 research outputs found

    Mixed H2/H∞ filtering for uncertain systems with regional pole assignment

    Get PDF
    The mixed H2/H∞ filtering problem for uncertain linear continuous-time systems with regional pole assignment is considered. The purpose of the problem is to design an uncertainty-independent filter such that, for all admissible parameter uncertainties, the following filtering requirements are simultaneously satisfied: 1) the filtering process is asymptotically stable; 2) the poles of the filtering matrix are located inside a prescribed region that compasses the vertical strips, horizontal strips, disks, or conic sectors; 3) both the H2 norm and the norm on the respective transfer functions are not more than the specified upper bound constraints. We establish a general framework to solve the addressed multiobjective filtering problem completely. In particular, we derive necessary and sufficient conditions for the solvability of the problem in terms of a set of feasible linear matrix inequalities (LMIs). An illustrative example is given to illustrate the design procedures and performances of the proposed method. © 2005 IEEE.published_or_final_versio

    State-Feedback Output Tracking Via a Novel Optimal-Sliding Mode Control

    Get PDF
    This chapter describes a new framework for the design of a novel suboptimal state-feedback-sliding mode control for output tracking while H2/H∞ performances of the closed-loop system are under control. In contrast to most of the current sliding surface design schemes, in this new framework, the level of control effort required to maintain sliding is penalized. The proposed method for the design of optimal-sliding mode control is carried out in two stages. In the first stage, a state-feedback gain is derived using a linear matrix inequality (LMI)-based scheme that can assign a number of the closed-loop eigenvalues to a known value while satisfying performance specifications and ensuring that all the closed-loop poles are located in a preselected subregion. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage by using one of the two different methods developed for this goal. We present a numerical example to demonstrate the remarkable performance of the proposed scheme

    System Identification and LMI Based Robust PID Control of a Two-Link Flexible Manipulator

    Get PDF
    This paper presents investigations into the development of a linear matrix inequalities (LMI) based robust PID control of a nonlinear Two-Link Flexible Manipulator (TLFM) incorporating payload. A set of linear models of a TLFM is obtained by using system identification method in which the linear model represents the operating ranges of the dynamic system. Thus, the LMI constraints permit to robustly guarantee a certain perturbation rejection level and a region of pole location.  To study the effectiveness of the controller, initially a PID control is developed for TLFM with varying payloads. The performances of the controllers are assessed in terms of the input tracking controller capability of the system as compared to the response with PID control. Moreover, the robustness of the LMI based robust PID control schemes is discussed. Finally, a comparative assessment of the control strategies is presented

    An extension algorithm of regional eigenvalue assignment controller design for nonlinear systems

    Get PDF
    This paper provides a new method to nonlinear control theory, which is developed from the eigenvalue assignment method. The main purpose of this method is to locate the pointwise eigenvalues of the linear-like structure built by freezing the nonlinear systems at a given time instant in a desired disk region. Since the control requirements for the transient response characteristics are the major constraints on the selection of the disk centre and radius, two different update algorithms are also developed to reshape the disk region by changing the disk centre and radius at each time step. The effectiveness of the proposed methods is tested in both simulations and experiments. A validated three-DOF laboratory helicopter is used for experiments
    corecore